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Abstract: Micro-electrical discharge machining (µ-EDM) has come up as an effective material removal
process for the manufacturing of miniaturized components in modern industries. The performance
and quality of the µ-EDM process mainly depend on the combination of process parameters selected.
This paper attempts to demonstrate the applicability of three well-known multi-criteria decision-
making (MCDM) techniques, including the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), multi-attributive border approximation area comparison (MABAC), and complex
proportional assessment (COPRAS) methods, separately hybridized with the grey wolf optimization
(GWO) algorithm. The proposed hybrid optimization approaches are applied to find the optimal
parametric setting of a µ-EDM process during machining on a stainless steel shim as the work material.
Feed rate, capacitance, and voltage were selected as the machining control parameters, while material
removal rate, surface roughness, and tool wear ratio were selected as the responses. The polynomial
regression (PR) meta-models are observed as the inputs to these hybrid optimizers. The results
obtained are further compared to the traditional weighted sum multi-objective optimization (WSMO)
approach, which suggests that all the considered MCDM-PR-GWO approaches outperform traditional
PR-WSMO-GWO approaches in obtaining better machining performance measures.

Keywords: µ-EDM process; MCDM; GWO; meta-model; optimization

1. Introduction

Micro-electrical discharge machining (µ-EDM) is emerging as an effective machining
process for manufacturing microcomponents in present-day industry. Its working principle
is based on that of the original EDM process, which employs electrical spark energy to
generate heat, leading to melting and evaporating the work material. This machining is well
known for its ability to produce high dimensional accuracy with a better surface finish [1].
µ-EDM is different from that of EDM with respect to the type of the pulse generator,
resolution of the axis movements, plasma channel radius, and size of the electrode [2]. It
finds its applications in areas like producing micro holes in fuel injection nozzles, spinnerets,
micro-electro-mechanical systems (MEMS), micro-fluidic devices, cooling holes of turbine
blades, etc. Like most other machining process, the µ-EDM process is also governed by
several machining parameters such as gap voltage, peak current, pulse-on time, flushing
pressure, pulse-off time, dielectric type, etc. To attain the best machining output, the
operator should have a thorough understanding of the process parameters and their
relation to several machining performance measures, such as the material removal rate
(MRR), taper, overcut (OC), surface roughness (Ra), tool wear ratio (TWR), etc. [3,4]. Mostly,
the selection of the optimal parametric combination relies on the operators’ knowledge
and expertise. However, it is usually seen that rapid tool wear, poor surface finish, slow
machining, etc., result from the selection of an inappropriate parametric combination. It is
thus recommended to apply suitable mathematical optimization techniques to identify the
optimal parametric setting of the µ-EDM process for enhanced machining performance.
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The parametric optimization of the µ-EDM process has been already studied by many
past researchers. Recently, Quarto et al. [5] adopted particle swarm optimization (PSO)
to identify the optimal parametric settings of peak current, voltage, and frequency while
performing µ-EDM of AISI304 as the work material. Selecting capacitance, voltage, and
the electrode rotational speed as the control parameters for the µ-EDM process, Nguyen
et al. [6] employed the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) approach to optimize responses such as depth of machining, overcut, and tool
wear. Das et al. [7] applied multi-criteria decision-making (MCDM) and the teaching–
learning-based optimization (TLBO) approach to identify the optimal parametric mix of
peak current, pulse-on time, gap voltage, and flushing pressure. Pain et al. [8] considered
four process parameters including voltage, frequency, duty factor, and tool diameter and
applied the grey relational analysis (GRA) method for maximizing the MRR and minimizing
OC. In addition, several other methods such as data envelopment analysis-based ranking
(DEAR) [9,10], the desirability function approach [11,12], non-dominated sorting genetic
algorithm (NSGA) [13,14], etc. were applied to find the optimal parametric setting for the
µ-EDM process.

In the presented work, considering the experimental dataset obtained from past re-
search, polynomial regression (PR) models were developed and simultaneously solved for
single- and multi-objective optimization using the grey wolf optimizer (GWO) algorithm.
Additionally, three popular MCDM techniques, namely the TOPSIS, multi-attributive bor-
der approximation area comparison (MABAC), and complex proportional assessment
(COPRAS) methods were hybridized separately with the GWO algorithm to identify the
optimal parametric combination of said µ-EDM process. Three PR models were devel-
oped based on the process parameters as input and the corresponding calculated MCDM
scores as the output. The MCDM-based PR metamodels were observed as the input to the
GWO optimizer and are henceforth known as the TOPSIS-PR-GWO, MABAC-PR-GWO,
and COPRAS-PR-GWO approaches. The results obtained were further compared to the
traditional weighted sum multi-objective optimization (WSMO) approach (known as the
PR-WSMO-GWO approach), which suggests that all the considered MCDM-PR-GWO
approaches outperformed the traditional approaches in obtaining better machining per-
formance measures. The flowchart for the hybrid MCDM-GWO approach is presented in
Figure 1.
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2. Methodology
2.1. PR Metamodel

A mathematical metamodel is a regression equation representing a set of input
variables with a given output [15]. Typically, a metamodel can be denoted by the
given expression:

y(x) = ŷ(x) + ε (1)

where y(x) is the output desired from the developed metamodel, ŷ(x) is the estimated
response, and ε represents the error. The PR metamodel is a commonly used statistical
technique that represents the relationships between the input and output variables, as
represented below:

y(x) = β0 +
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i +

n

∑
i ̸=j ̸=k

βijkxixjxk +
n

∑
i ̸=j ̸=k ̸=.. ̸=n

βijk...nxixjxk . . . xn + ε (2)

where y(x) is the desired output, xi is the ith input variable (i = 1,2, . . ., n), β0 is the intercept
coefficient, βi is the effect coefficient of the ith input variable, βii is the effect coefficient of
the xi

2 term, βijk is the interaction coefficient for variables i, j, and k (i ̸= j ̸= k), βijk. . .n is the
interaction coefficient for all the considered variables (i ̸= j ̸= k . . . ̸= n), and ε represents
the error.

2.2. Grey Wolf Optimizer

Grey wolves usually live and hunt in groups. The GWO technique takes into account
the leadership and hunting techniques of grey wolves. Almost half the iterations of
the original GWO are engaged for exploration and the next half for exploitation. The
solutions derived from the GWO are divided into four groups, namely alpha (α), beta (β),
delta (δ), and omega (ω), representing the best, second-best, third-best, and remaining
solutions, respectively. The practice of hunting by grey wolves is mainly divided into five
components [16,17], i.e., (a) social hierarchy, (b) tracing, pursuing, and nearing the prey, (c)
following, surrounding, and distressing the prey until it halts moving, (d) attacking the
prey (exploration), and (e) searching for new prey (exploitation). This is mathematically
represented as

→
D =

∣∣∣∣→C .
→
Xp(t) −

→
W(t)

∣∣∣∣ (3)

→
W(t + 1) =

→
Wp(t) −

→
A.

→
D (4)

where iteration number is t,
→
Wp(t) and

→
W(t) indicate the location vectors of the prey and

the grey wolf, respectively, for iteration t,
→
W(t + 1) is the new location of the grey wolf,

and the coefficient vectors
→
A and

→
C can be calculated as:

→
A = 2

→
a .

→
r 1 − →

a (5)

→
C = 2.

→
r 2 (6)

where
→
r 1 and

→
r 2 are vectors usually taken within 0 and 1. The value of the

→
a vector

decreases linearly from 2 to 0 with each iteration and is specified by:

→
a (t) = 2 − 2t

tmax
(7)

where tmax represents the maximum number of iterations.
After surrounding the prey, a grey wolf starts the hunt (finding the best solutions). At

this stage, the best wolf (α, β, and δ) candidates have superior information about the prey
location. At the same time, the remaining wolf candidates (ω wolves) alter their positions
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in accordance with the locations of the best wolf candidates. The hunting pattern of grey
wolves can be denoted mathematically as follows:

→
Dα =

∣∣∣∣→C1.
→
Xα −

→
W

∣∣∣∣ (8)

→
Dβ =

∣∣∣∣→C2.
→
Xβ −

→
W

∣∣∣∣ (9)

→
Dδ =

∣∣∣∣→C3.
→
Xδ −

→
W

∣∣∣∣ (10)

→
W1 =

→
Wα −

→
A1(

→
Dα) (11)

→
W2 =

→
Wβ −

→
A2(

→
Dβ) (12)

→
W3 =

→
Wδ −

→
A3(

→
Dδ) (13)

→
W(t + 1) =

→
W1(t) +

→
W2(t) +

→
W3(t)

3
(14)

The hunting process ends with the grey wolves attacking the prey when it stops
moving. Mathematically, this is represented by decreasing the value of

→
a .

→
a is also

responsible for decreasing the fluctuation range of
→
A in the interval [−a, a]. When the value

of
→
A is [−1, 1], the subsequent location of the search agent can be somewhere between its

present location and the location of the prey. A value of |A| < 1 will make the wolves
attack, and |A| > 1 will make the grey wolves deviate from the prey to search for a better
prey location. After the hunt of the prey, the grey wolves begin exploration for new prey
in subsequent iterations. The process of exploration ends when the termination condition
is satisfied.

3. Results and Discussion
Parametric Optimization of µ-EDM Process

To demonstrate the applicability of the proposed hybrid MCDM-GWO approach,
the experimental observations of Natarajan et al. [18] are considered in this paper. The
experiments were conducted in a multipurpose micromachine tool fixed with a tungsten
electrode (tool) of 300 µm diameter on a stainless steel shim (workpiece). A schematic
diagram of the µ-EDM process setup is shown in Figure 2. Considering a central composite
design with 32 experimental design points including 5 center points, Natarajan et al. [18]
conducted 32 sets of experiments. For the machining control parameters, feed rate (A) in
µm/s, capacitance (B) in nF, and voltage (C) in V were selected and varied. Other machining
parameters were kept fixed, such as spindle speed = 2000 rpm, drilling depth = 500 µm,
synthetic oil as the dielectric fluid, and the threshold value taken as 30. For measuring
the machining performance, MRR in mm3/min, Ra in µm, and TWR were selected as
responses. The MRR was calculated as the reduction in volume of the material before
and after machining with respect to machining time. The Ra on the machined profiles
was measured by using a white light interferometer microscope. TWR is the ratio of the
volume of tool material removed with respect to the volume of workpiece material removed.
The experimental plan and the measured responses are provided in Table 1. Using the
desirability function approach, Natarajan et al. [18] concluded that a parametric setting
of feed rate = 4.31 µm/s, capacitance = 0.1 nF, and voltage = 120 V results in optimum
response values of MRR = 0.016 mm3/min, Ra = 0.49 µm, and TWR = 1.08.
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Table 1. Experimental plan and measured responses [18].

Exp. no. A
(µm/s)

B
(µm)

C
(V)

MRR
(mm3/min)

Ra
(µm) TWR

1 2 0.1 80 0.003 0.36 1.64
2 4 0.1 80 0.008 0.38 0.54
3 6 0.1 80 0.01 0.38 1.78
4 2 0.1 100 0.004 0.41 2.38
5 4 0.1 100 0.008 0.45 1.32
6 6 0.1 100 0.008 0.52 2.32
7 2 0.1 120 0.007 0.42 2.68
8 4 0.1 120 0.017 0.45 0.89
9 6 0.1 120 0.012 0.54 1.92

10 2 1 80 0.004 1.1 2.23
11 4 1 80 0.01 1.2 1.32
12 6 1 80 0.01 1.2 2.35
13 2 1 100 0.007 1.9 2.68
14 4 1 100 0.018 1.82 1.28
15 6 1 100 0.016 1.88 2.62
16 2 1 120 0.008 1.9 2.88
17 4 1 120 0.038 1.82 1.19
18 6 1 120 0.018 1.82 2.23
19 2 10 80 0.007 3.8 2.46
20 4 10 80 0.011 3.7 1.23
21 6 10 80 0.013 3.7 2.78
22 2 10 100 0.01 4.2 2.92
23 4 10 100 0.036 4.8 1.82
24 6 10 100 0.012 4.4 2.82
25 2 10 120 0.022 5.2 3.16
26 4 10 120 0.046 5.9 1.58
27 6 10 120 0.014 4.8 3.12
28 4 1 100 0.009 1.88 1.2
29 4 1 100 0.052 1.86 1.48
30 4 1 100 0.024 1.65 1.38
31 4 1 100 0.014 1.74 1.36
32 4 1 100 0.022 1.7 1.54

Next, based on the experimental dataset presented in Table 1, three PR models were
developed for the three considered responses using Minitab 19.1 software. These PR models
represent mathematical relationships of the output performance measures with the input



Eng. Proc. 2023, 59, 112 6 of 10

machining parameters. These models were first solved for traditional single-objective
optimization followed by multi-objective optimization for the said µ-EDM process.

Y(MRR) = −0.0479 + 0.0244 × A + 0.0027 × B + 0.00001 × C − 0.00296 × A2 − 0.000693 × B2 + 0.000001 × C2 +
0.00078 × A × B + 0.00001 × A × C + 0.00006 × B × C − 0.00001 × A × B × C

(15)

Y(Ra) = −3.65 + 0.288 × A + 1.048 × B + 0.0624 × C − 0.033 × A2 − 0.1006 × B2 − 0.000272 × C2 + 0.0145 × A × B −
0.00011 × A × C + 0.00394 × B × C − 0.000184 × A × B × C

(16)

Y(TWR) = −2.63 − 2.039 × A + 0.513 × B + 0.1482 × C + 0.3153 × A2 − 0.03688 × B2 − 0.000592 × C2 − 0.0246 × A ×
B − 0.00541 × A × C − 0.00097 × B × C + 0.000318 × A × B × C

(17)

For the single-objective optimization, each of the developed PR models was solved
separately using the GWO algorithm in the Matlab R2016a software, considering the speci-
fied ranges of the machining parameters (2 µm/s ≤ A ≤ 6 µm/s, 0.1 nF ≤ B ≤ 10 nF, and
80 V ≤ C ≤ 120 V) as the constraints. The GWO-specific parameters were set as the number
of search agents (grey wolves) = 500, the maximum number of cycles/generations = 150,
and the number of iterations = 100. The results obtained for the single-objective optimiza-
tion by solving each PR model are given in Table 2. It can be seen from the table that
the single-objective optimization produced dissimilar results, which are not possible to
maintain in a single machining setup. To overcome this drawback, a single combination of
machining parameters should be derived through multi-objective optimization using the
PR-WSMO-GWO approach. The following equation has been developed.

Minimize Z = −w1 ×
Y(MRR)
MRRmax

+ w2 ×
Y(Ra)
Ramin

+ w3 ×
Y(TWR)
TWRmin

(18)

where Y(MRR), Y(Ra), and Y(TWR) are the developed PR models for the three considered
responses, MRRmax = 0.047143 mm3/min, Ramin = 0.16287 µm, and TWRmin = 0.63627, and
w1, w2, and w3 are the weights assigned to MRR, Ra, and TWR, respectively. In this paper,
the CRITIC method [19,20] was employed to estimate the weights of MRR, Ra, and TWR as
0.3425, 0.2722, and 0.3853, respectively. Thus, by applying the PR-WSMO-GWO approach
and solving Equation (18), the corresponding values of MRR, Ra, and TWR were obtained
as 0.0126 mm3/min, 0.3892 µm, and 0.7042, respectively, at the machining parametric
intermix of feed rate = 3.55 µm/s, capacitance = 0.158 nF, and voltage = 80 V.

Table 2. Results of single- and multi-objective optimization.

Condition Output A (µm/s) B (µm) C (V) Optimal Value

Single-objective
MRR (mm3/min) 3.9045 5.9608 120 0.047143

Ra (µm) 2 0.1 80 0.16287
TWR 3.9195 0.1 80 0.63627

Multi-objective
MRR (mm3/min)

3.55 0.158 80
0.0126

Ra (µm) 0.3892
TWR 0.7042

As stated above, this paper solves the multi-objective parametric optimization problem
based on two approaches, i.e., PR-WSMO-GWO and MCDM-PR-GWO (TOPSIS-PR-SWO,
MABAC-PR-SWO, and COPRAS-PR-SWO). For the PR-WSMO-GWO approach, Equation
(18) was solved to identify the optimal parametric combination for the said µ-EDM process.
On the other hand, for the MCDM-PR-GWO approach, the 32 experimental observations
presented in Table 1 were first considered as the initial decision matrix to be solved by
the three MCDM methods (TOPSIS, MABAC, and COPRAS). The MCDM scores were
calculated for all 32 experimental trials and provided in Table 3. For all the considered
MCDM methods, the weights calculated by the CRITIC method were taken into account.
Next, for the development of corresponding PR models, the 32 experimental combinations
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presented in Table 1 were taken as the independent variables, and the measured MCDM
scores as the dependent variables. Thus, three MCDM-PR metamodels were developed
as Y(TS), Y(MS), and Y(CS) for the three measured MCDM scores, i.e., the TOPSIS score,
MABAC score, and COPRAS score, respectively.

Y(TS) = 0.453 + 0.335 × A − 0.0556 × B − 0.0132 × C − 0.04524 × A2 − 0.00052 × B2 + 0.000064 × C2 + 0.0099 × A
× B + 0.000409 × A × C + 0.00054 × B × C − 0.000116 × A × B × C

(19)

Y(MS) = −0.039 + 0.4564 × A − 0.108 × B − 0.0248 × C − 0.06544 × A2 + 0.00553 × B2 + 0.000106 × C2 + 0.0084 ×
A × B + 0.000873 × A × C + 0.000372 × B × C − 0.000105 × A × B × C

(20)

Y(CS) = 0.1031 + 0.0406 × A − 0.01448 × B − 0.0027 × C − 0.005002 × A2 + 0.001057 × B2 + 0.000013 × C2 −
0.000145 × A × B + 0.000009 × A × C + 0.000029 × B × C

(21)

Table 3. Calculated performance scores for the considered MCDM techniques.

Exp No. TOPSIS Score MABAC Score COPRAS Score

1 0.4161 −0.5082 0.0313
2 0.4913 −0.3125 0.0751
3 0.449 −0.4809 0.034
4 0.3887 −0.6125 0.0235
5 0.455 −0.4306 0.0395
6 0.407 −0.5811 0.0261
7 0.392 −0.6361 0.0234
8 0.5439 −0.3045 0.058
9 0.4505 −0.4953 0.0324
10 0.365 −0.6243 0.0214
11 0.4421 −0.4535 0.0329
12 0.3881 −0.605 0.0244
13 0.3204 −0.7089 0.0188
1 4 0.4884 −0.4222 0.0346
15 0.3882 −0.6361 0.0253
16 0.3185 −0.7313 0.0188
17 0.7263 −0.2691 0.0492
18 0.4304 −0.5619 0.0284
19 0.2174 −0.7699 0.0159
20 0.3546 −0.5561 0.0226
21 0.2523 −0.7701 0.0195
22 0.187 −0.8362 0.0166
23 0.5235 −0.5222 0.0358
24 0.1997 −0.8173 0.0179
25 0.2822 −0.8367 0.0235
26 0.5721 −0.471 0.0417
27 0.1927 −0.8671 0.0184
28 0.416 −0.4762 0.0288
29 0.8128 −0.2159 0.0561
30 0.5524 −0.3866 0.0388
31 0.4501 −0.4579 0.0316
32 0.5187 −0.4265 0.0358

The developed MCDM-PR metamodels were then solved individually using the GWO
algorithm in the Matlab R2016a software. In all three cases, the maximum values of
the MCDM scores are desirable. Hence, the objective was to maximize all the MCDM-PR
metamodels. The results obtained are provided in Table 4. In this table, the obtained optimal
parametric values were substituted in Equations (15)–(17) to estimate the corresponding
values of MRR, Ra, and TWR. It can be seen from Table 4 that compared to the PR-WSMO-
GWO approach, the MABAC-PR-GWO and COPRAS-PR-GWO approaches superseded
the response values in two out of the three considered responses, whereas the TOPSIS-PR-
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GWO approach provided better response values as compared to PR-WSMO-GWO for all
three responses. Also, the computational time required by each metamodel was calculated,
as shown in Table 4. It can be observed that all three MCDM-PR-GWO approaches take
computationally less time compared to that of the PR-WSMO-GWO approach.

Table 4. Comparative analysis between PR-WSMO-GWO and MCDM-PR-GWO approaches.

Method A
(µm/s)

B
(µm)

C
(V)

MRR
(mm3/min)

Ra
(µm) TWR Comp. Time (s)

PR-WSMO-GWO 3.55 0.158 80 0.0126 0.3892 0.7042 1.03886
TOPSIS-PR-GWO 3.9578 0.1 80 0.0134 0.3245 0.6367 1.02534
Improvement % - - - 6.35 16.62 9.58 1.3

PR-WSMO-GWO 3.55 0.158 80 0.0126 0.3892 0.7042 1.03886
MABAC-PR-GWO 3.8578 0.1 80 0.01232 0.3224 0.6375 1.00352

Improvement % - - - -2.22 17.16 9.47 3.4
PR-WSMO-GWO 3.55 0.158 80 0.0126 0.3892 0.7042 1.03886

COPRAS-PR-GWO 3.8578 0.1 80 0.01232 0.3224 0.6375 1.01936
Improvement % - - - -2.22 17.16 9.47 1.88

To compare the three considered MCDM-PR-GWO variants and PR-WSMO-GWO,
the predicted response values obtained in Table 4, along with the measured responses
provided in Table 1, were first normalized together and finally added for each variant
separately. The results obtained are given in Table 5. It is clearly revealed that the highest
sum of normalized scores (2.1749) for the TOPSIS-PR-GWO approach outperforms the
other MCDM-PR-GWO and PR-WSMO-GWO variants in identifying better response values
for the said µ-EDM process. Thus, based on the TOPSIS-PR-GWO approach, the optimal
parametric combination can be identified as feed rate = 3.9578 µm/s, capacitance = 0.1 nF,
and voltage = 80 V for simultaneous improvement of the µ-EDM performance measures.
The moderately higher value of the feed rate is suggested, as MRR and TWR are directly
related to the feed rate. However, with higher values of feed rate, the MRR reduces with the
formation of high voltage as it erodes the tool material, reducing the removal of material
from the workpiece. An increase in capacitance and voltage produces stronger sparks,
resulting in erosion of both the workpiece and tool material. This causes the formation
of unwanted debris increasing the Ra. The convergence diagram illustrated in Figure 3
also suggests that compared to other MCDM variants, the TOPSIS-PR-GWO approach
converges to the optimal solution at a much faster rate.

Table 5. Comparative analysis between MCDM-PR-GWO variants.

Method
Parametric Combination Normalized Response Values

Sum
A B C MRR Ra TWR

PR-WSMO-GWO 3.55 0.158 80 0.1959 0.988 0.9373 2.1212
TOPSIS-PR-GWO 3.9578 0.1 80 0.2122 0.9996 0.9631 2.1749
MABAC-PR-GWO 3.8578 0.1 80 0.1902 1 0.9628 2.153
COPRAS-PR-GWO 3.8578 0.1 80 0.1902 1 0.9628 2.153
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4. Conclusions

In this paper, an attempt was made to demonstrate the applicability of hybrid MCDM-
GWO (TOPSIS-PR-GWO, MABAC-PR-GWO, and COPRAS-PR-GWO) approaches in iden-
tifying the optimal parametric combination for the µ-EDM process. The results obtained
are further compared to the traditional PR-WSMO-GWO approach, which suggests that
all the considered MCDM-PR-GWO approaches outperform the traditional approach in
obtaining better machining performance measures. Also, among the three MCDM-PR-
GWO approaches, the TOPSIS-PR-GWO approach provides superior results while con-
verging at a much faster rate as compared to the others. Based on the TOPSIS-PR-GWO
approach, the optimal parametric combination is identified as feed rate = 3.9578 µm/s,
capacitance = 0.1 nF, and voltage = 80 V, which results in optimal response values of
MRR = 0.0134 mm3/min, Ra = 0.3245 µm, and TWR = 0.6367. It is also observed that the
MCDM-PR-GWO approaches take computationally less time than the PR-WSMO-GWO
approach. As a future scope, the work can be further explored by including other MCDM
approaches hybridized with different meta-heuristic algorithms applied toward identifying
the optimal parametric combination of various machining processes. One of the major
limitations of hybrid MCDM-GWO approaches is the dependency of the results on the
developed PR-based metamodels to define the condensed information into usable GWO
objective functions. An inappropriate PR model can produce inaccurate results.
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