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Abstract: Steam methane reforming (SMR) approaches are highly recognised and pivotal in industrial
H, production, contributing over 40% to global hydrogen production. The prime objective of
this study is to optimise the significant parameters involved in the SMR process to achieve the
utmost conversion of CHy to Hy. To attain this, a sophisticated one-dimensional unsteady-state
heterogeneous plug flow reactor (PFR) model was methodically constructed and simulated using the
Aspen HYSYS V11 software. The study comprises an exhaustive comparison of seven diverse sets of
catalysts, primarily categorised based on the different weight percentages of Ni in Ni/Al,O3 catalysts,
along with various promoters incorporated to enhance the conversion rate in the SMR process. This
comprehensive evaluation identifies the most operative catalyst configuration for optimising CHy
conversion. The results obtained through the simulations revealed that CHy conversion intensifies
with an increase in temperature, while it weakens with higher pressures within the catalyst set
considered for the study. The analysis yielded promising conclusions by comparing the simulated
CHy conversion percentages at various temperatures with data from the existing literature. The
maximum absolute error encountered was only 3.72%, signifying the accuracy and reliability of the
developed model. Moreover, the Mean Absolute Error (MAE) calculated was a low 1.42%, suggesting
the robustness of the proposed approach. The findings lay the foundation for future innovations and
improvements in the field, ultimately fostering more efficient and sustainable hydrogen generation.
As the demand for clean energy grows, the optimisation of the SMR process becomes increasingly
vital, making this study a crucial step towards meeting global energy needs while minimising

environmental impact.

Keywords: steam methane reforming; plug flow reactor; Aspen HYSYS; catalysts; mean absolute error

1. Introduction

In recent decades, there has been a significant increase in demand for energy. The
increased usage of fossil fuels has been observed across various industries, resulting in
higher levels of greenhouse gases and environmental pollution in the Earth’s atmosphere [1].
To meet global energy demands and reduce adverse effects, research is being done on
alternative energy sources [2]. The dwindling supply of coal and oil has sparked a surge
in the pursuit of renewable and alternative energy sources. In today’s modern landscape,
renewable energy sources have garnered a significant following for their versatility in
various applications. One such source, biogas, has emerged as a promising contender [3].
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The CH4 contribution per mole in generating greenhouse gas is 25 times more than
that of a mole of CO,, and the amount of energy produced by utilising H, is about
2.4 times that of CHy for combustion purposes. Therefore, the conversion and utilisa-
tion of CHy to H have received a tremendous amount of research attention recently [4-6].
As per the Energy Policy Act of 1992, the interest in Hj as an alternate fuel has recently
increased dramatically. The preference for H; from food waste is considered a promising re-
newable energy source due to its ability to be used for household purposes, clean-burning
potential, fuel cell vehicles, and 2-3 times higher efficiency prospects than petroleum
products [7].

There are different leading methods for reforming methane: steam methane reforming
(SMR), partial CHy oxidation (POx), dry CHy4 reforming (DR), and auto thermal CHy
reforming (ATR) [8]. Among the CH,4 reforming technologies, SMR has gained research
attention [4] because it has been reported that steam reforming of CH, present in the natural
gas process produces approximately 40% of the total global demand for Hj, and it is one
of the least expensive ways of producing Hy, thus contributing its share to cleaner energy
production [6]. SMR yields four mols of H, and one mol of CO, for each CH, group and
has a high H, yield efficiency of up to 74% [8]. The SMR equation is represented below:

k]

CHj + HyO — CO + 3Hy, AH 298 K =206 1)
kJ
CO +H,0 —+ CO, +Hy, AH298K = —41 =, @)

The numerous transitions and catalysts made with noble metals and used for
Equation (1) (syngas gas generation) and Equation (2) (water—gas shift reaction) com-
bination processes have been reported. Metals like platinum (Pt), rhodium (Rh), and
ruthenium (Ru) are considered noble due to properties such as their exceptional catalytic
activities and maturity against coke resistance, However, they are excessively costly to
deploy in industrial SMR applications. Interestingly, Ni as a base metal catalyst shows
good performance at an affordable price. Therefore, Ni-based catalysts are widely utilized
on an industrial scale for reforming process applications. However, Ni-based catalysts are
easily suspectable to deactivation by metal sintering, oxidation, and coking [8-10].

Various catalyst characteristics include CHy selectivity, activity and conversion, Hj
yield, thermal stability, and coke resistance. Each catalyst tailored to specific applications,
based on its desired characteristics, is presented in Table 1 [6,11].

Table 1. Catalyst enhancements and their effects.

S. No. Catalyst and Modifications Key Findings

1. Good thermal stability, H, selectivity,

1 Ni/Si02A105 coke resistance
2 Nig.03Mgp.970 solid solution 1. Good stability for longer periods of time
. . . 1. Enhances the activity with better stability
3 Zinc addition to Ni/Al,O5 2. Enhanced hydrogen selectivity
4 Cu addition to Ni/ALOs 1. Enhanced catalys.t stabilization
2. Low coke formation

1.  Optimum catalyst towards hydrogen
5 15Ni-1Cu-5Zn/y- Al,O3 yield.

2. Lower selectivity to CO
. 1. Increased coke resistance.
6 K as a promoter to Ni/Al,O3 2. Promote reactivity
. 1. Highly active with good repeatability
7 Ni-03095/y- AlLOs 2. No Carbon deposition.
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2. Materials and Methods

Mathematical modelling is critical in developing chemical reactions at elevated temper-
atures and pressure. It aids in comprehending the experimental processes and procedures
observed by testing SMR reactor models with software that is firmly established. With axial
dispersion, the SMR process is represented by a mathematical model with heterogeneous
and one-dimensional properties, accounting for mass transfer in solid as well as gas phases,
balanced energy distribution covering the reactor arrangements, and reaction kinetics in
Aspen HYSYS [12,13].

The model being developed followed the assumptions given below:

1D heterogeneous plug flow model with adiabatic operation.

The reactant flow is realistic to the ideal gas law.

The temperature of the reaction and reactant concentration gradients are negligible
in the direction of the radius. As a result, accountable changes in temperature and
concentration are only in one direction, specifically in the axial direction.

The bed porosity and size of catalyst particles are uniform.

The catalyst particle temperature gradient is neglected.

Uniform inlet conditions were ensured. To model the CH, reforming reactions, five
sets of rate equations need to be interpreted: continuity, momentum, energy, and species
transport equations describing mass, energy, and momentum transfer are expressed as
depicted below [14,15]:

Continuity Equation:

dp  9(pU)  9(pV) _
ot ax T oy O ®)

Xand Y direction momentum equation:

a(pU) a(pU) a(pU)  oP 1 [0*U  0°U
ot TV TV T X TRela@ Tav? @)
a(pV) a(pV) dpV) P 1 [d*V  2*V
ot +U 0X v Y ~ 9X ' Re X2 +aY2 ©)

where P = stream pressure, and V = gas stream viscosity.
Each equation’s right-hand side has three terms: the first for pressure forces and the
second and third for viscous forces.

Energy Equation:
p% = —Pdivu+div(kgrad T) + ¢ +S (6)
. Ju odv
divu = ™ + @ 7)
oT  dT
grad T = x + g 8)

SIEROIREEIN

where e = internal specific energy, k = thermal conductivity of the species, ¢ = energy of
dissipation rate for a given volume, and S = work done/unit volume by body forces.

The first term on the right-hand side of the equation represents the rate of work done
for a considered volume, while the second term represents the rate of heat transfer for a
considered volume through reaction conduction.

Species transport equation:

I(pYi) n

+

oY) , oY) _ {a(h,x) ()
ox X
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i
L ox

(]i,y) = —pDi?;i (12)

(Jix) = —pD (11)

where Y; = mass fraction, D; = co-efficient of diffusion, J; = mass flux of the reactant compo-
nent, and i, and S; = net chemical reactions production rate of the reactant species [16].

Modelling and Simulating Steps for Aspen HYSYS

The first step involves selecting the species—CH,, H,O, CO, CO,, and Hy. Peng—
Robinson’s equation of state is selected to solve the chemical kinetics that are present as a
function of pressure and temperature. The set of syngas generation and water—gas shift
reaction equations are given as the set of reactions that occur during the SMR process. The
respective chemical kinetic parameters presented in Tables 2 and 3 are given as input to
the rate equations and are solved. According to the format required for Aspen HYSYS, the
constants obtained after solving are given to the respective reactions.

Table 2. Properties of Ni-based SMR catalyst bed.

Catalyst Name dp (m) Peat (kg/m3®)  ppeq (kg/m3) eb
Catalyst—1 Ni/MgAl,Oy 2.00 x 1073 1870 1122 0.4
Catalyst—2 Ni-0309S/v-Al,O3 1.75 x 1073 3737 2429 0.35
Catalyst—3 Ni/Kj 4Al1090172 5.60 x 1073 1687 877 0.48
Catalyst—4 18 wt% NiO/a-AL,O3  1.20 x 103 1870 1122 0.4
Catalyst—5 15.4 wt% Ni/ a-Al, O3 1.60 x 1073 1274 726 0.43
Catalyst—6  10.34 wt% Ni/a-ALO;  2.15 x 10~ 2200 1320 0.4
Catalyst—7 8.6 wt% Ni/y-AlLO; 540 x 1073 2355 1154 0.51

Table 3. Catalyst Arrhenius kinetic parameters.

Catalyst ( E1 E Es %15 Az %:;
J/mol) (J/mol) (J/mol) (mol bar’>/kgc,t s) (mol/kg, bar s) (mol bar’>/kgc s)
Catalyst—1 240,100 67,130 243,900 117 x 105 543 x 10° 2.83 x 101
Catalyst—2 209,500 70,200 211,500 9.048 x 1011 543 x 10° 2.14 x 10°
Catalyst—3 218,550 73,523 236,850 5.83 x 10 251 x 10* 467 x 1018
Catalyst—4 257,010 89,230 236,700 5.19 x 10'2 9.90 x 10° 1.32 x 1013
Catalyst—5 217,010 68,200 215,840 5.79 x 10'? 9.33 x 10° 1.29 x 10%3
Catalyst—6 216,722 67,966 227,941 9.78 x 101 529 x 105 257 x 101
Catalyst—7 240,100 67,130 243,900 9.49 x 10" 4.39 x 10° 229 x 10"

In the Aspen Hysys solver as shown in Figure 1, the CHy and H,O feed is set at the
required temperature and pressure, and the S/C ratio is maintained at 3. The CHy4 volume
flow rate is set at 25 lit/hr. These two streams are mixed, and the output of this pre-feed is
sent as the inlet to a heater in which the output is set to the required temperatures, while the
pressure drop is kept at 0. This is then sent to a plug flow reactor whose length is 49.5 cm,
and the inner diameter is set to 1.2 cm. The other bed catalyst properties mentioned in
Table 4 are also given in the plug flow reactor and simulated.
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Methane Plug
Feed Flow
Reactor
SMR
PreFeed OUT
s/C PRE-HEATER
Steam MIXER
Feed
Figure 1. SMR process modelled in Aspen HYSYS.
Table 4. Comparison of CHy conversion (%) at different temperatures.
Author [17] Present Work
Temperature (K) - Absolute Error (%)
CHy4 Conversion (%)
873 87.09 90.328 3.72
923 95.92 92.7310404 3.32
973 97.88 95.0713494 2.87
1023 98.88 97.144423 1.75
1073 99.73 98.9914669 0.74
1123 99.89 99.9374718 0.05
1173 99.99 99.999617 0.01
1223 99.97 99.9998265 0.03
1273 99.74 99.9998411 0.26

3. Results

The reactor model-simulated data generated from the Aspen HYSYS was validated in
contradiction to steady-state industrial-generated data [17]. The packed catalyst bed adia-
batic reactor model was presumed to abide by the non-ideal SMR plug flow characteristics,
utilizing the catalyst present in the conditions used for the validation. The side-by-side
comparison of results obtained from the literature and the simulated values were grouped
and are shown in Table 4. It was observed that the Maximum Absolute Error (MAE) of
3.72% and the Relative Mean Error (RME) of 1.42% were found. The reliability and accuracy
of a developed Aspen HYSYS SMR model with a low absolute error of 3.72% indicates
that the model’s predictions are very close to the actual values reported in the literature,
indicating calculated CH4 conversion percentages are within an average deviation of just
3.72% from the reference data points. Such a small absolute error suggests that the SMR
model is proficient in capturing the primary behaviours and trends of the Ni-based cat-
alytic system. Furthermore, the RME of 1.42% underpins the SMR model’s reliability. RME
signifies the average extent of the errors between the model’s calculations and the actual
values. In this work, 1.42% shows the model’s consistently accurate performance across
various temperature and pressure data points. The forecasted results of the outlet of the
SMR reactor with the molar composition of the reformed product gases are equated with
the industrial statistics and are shown in Table 5. This is predominantly significant in
catalytic processes like the SMR process, where even minute errors in estimation can have
significant implications for process optimization and productivity.
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Table 5. Mole fractions of products at outlet over various temperatures.
Mole Fractions of Products at the Outlet of the Reactor
773 K 873 K 973 K 1073 K
. This This , This /, This )
Exit work 41 work 41 work 4l work (41
P=10b CHy 0.265 0.26 0.206 0.203 0.132 0.126 0.065 0.05
=10 bar

5/C=3 cO 0.002 0.004 0.014 0.015 0.053 0.061 0.108 0.115
Hy 0.166 0.174 0.291 0.3 0.414 0.434 0.528 0.563
H,O 0.526 0.524 0.429 0.421 0.338 0.314 0.246 0.222

CO, 0.041 0.038 0.06 0.061 0.063 0.065 0.053 0.05

4. Discussion

H, CO,, CO, H;O, and CHy are the species that exist as reactants and products
in the SMR reaction. For the syngas generation and water—gas shift reactions, the rate
equations are determined in relation to the concentrations of the species adsorbed. By
using equilibrium relations, a few of these concentrations were eliminated and balanced
by considering the sites which are active, and even including those unreacted vacant
constituents and those enclosed by species adsorbed. This results in the obtaining of rate
equations in terms of the constituent’s partial pressures in the gas phase, and these rate
equations result from the reacting species adsorbed [18].

The SMR reaction rate is greatly influenced by the temperature of the operation and
gas concentrations. The molar steam to CHy ratio is kept constant to inspect the impact of
pressure and temperature. Similarly, the pressure effect is investigated by considering the
temperature and constant molar steam to the CHy ratio. The below-mentioned equation is
used to estimate the CHy conversion.

NCHy,in — NCHy,out

CH,4 Conversion (%) =
NCHy,in

x 100 (13)

where n represents the molar rate flow of the CHy through the reactor.

When the temperature rises, the CHy conversion in the plug flow SMR reaction
becomes stronger due to the higher kinetic energy of molecules. This leads to more
collisions and successful reactions. At elevated temperatures, the activation energy barrier
for the reaction is more easily overcome, promoting the formation of products. However,
if the pressure is too high, the conversion weakens because it affects the equilibrium,
which is pushed towards the reactants. This reduces the yield of desired products and
reaction kinetics. The partial pressures of the reactants increase, which can potentially
lead to increased rates of reverse reactions. Therefore, finding the right balance between
temperature and pressure is crucial to achieving the most efficient SMR process without
any secondary reactions or catalyst deactivation.

4.1. Effect of Temperature

The temperature has a significant impact on the SMR process sensitivity. In accordance
with Le Chatelier’s principle, it has been observed that, at equilibrium, in the SMR reaction
during Syngas generation, the rate showed an increase with the increase in the reactor
operating temperature [19,20]. The conversion rates of CH, with the effect of temperature
are demonstrated in Figure 2a,b. The observations from figures states that the temperature
has a constructive effect, i.e., the conversion of CH, intensifies with an intensification in
temperature, and the CHy conversion remains high at higher temperatures.
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Figure 2. (a,b): Effect of the temperature on CHy conversion (%) at (a) 1.5 and (b) 2 bar.

4.2. Pressure Effect on SMR Reaction

To understand the effect of the reactant’s pressure parameter on the CHy4 conversion
rates, the S/C ratio is constant at 3.0 during the reaction, and the pressure variations
are plotted for the parameters against a constant temperature, as shown in the following,
Figure 3a,b. From the plots, it can be inferred that for all the seven catalysts used for analysis,
the conversion rates of CHy go down as the pressure of reactants increases. This suggests
that CHy conversion is favoured at lower pressures for the set of catalysts considered in
this work. In SMR reactions at higher pressures, the number of moles on the product
side is more; this causes the equilibrium shift towards the reactants, resulting in reduced
CHy conversion.
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Figure 3. (a,b): Effect of the pressure on CHy conversion (%) at (a) 873 K and (b) 973 K.
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In Figure 4 the conversions of CHy to Hj at the reformer exit of different sets of
catalysts (catalysts 1-7) are forecasted under the operating conditions of 823 K, 1.5 bar,
and S/C of 3.0 for an adiabatic reactor. A simulation with catalyst 6, which is 10.34 wt%
Ni/Al,Os, generates the highest CH4 conversions of 71.96% and 43.95 at 823 K and 1.5 bar
pressure due to its fast kinetics. The energy for activation to generate syngas using catalyst
6 is low, and thus the rate constant value is high. Therefore, the rate of s of CHy selectivity
and conversion to Hj is considerably higher for catalyst 6 compared to the other catalysts
used in the current work. Catalyst 4 shows the lowest CHy conversion (68.2 %), with
operating conditions of 823 K, 1.5 bar, and S/C of 3.0 compared to the other catalysts.
Considering the following order of catalyst activity in terms of CHy4 conversion, Catalyst 6
> Catalyst 5 > Catalyst 7 > Catalyst 1 > Catalyst 3 > Catalyst 2 > Catalyst 4 for optimum
conversion. The SMR process is an extremely endothermic reaction that requires the reactor
to be operated under adiabatic conditions.

CH, Conversion

Figure 4. Comparison in terms of CHy conversion (%) for various catalysts at 823 K, 1.5 bar, S/C
of 3.0.

5. Conclusions

The technicalities involved in an SMR process were studied from the extensive lit-
erature on catalysts that can be used in the SMR process, with seven different Ni-based
catalysts. The catalysts were simulated in the operating conditions of pressures 1.5 and
2 bar, a molar S/C ratio of 3, and temperature varying from 873 to 923 K to obtain higher
CHy conversion rates to Hy. A heterogeneous 1D adiabatic plug flow reactor model is
deployed to compare the performance of seven Ni-based metal commercial catalysts in the
SMR process. The reactor with the chemical kinetics of the respective catalysts is modelled
and simulated in Aspen HYSYS. The modelling results were in decent agreement with
chemical equilibrium calculations based on the literature. The reactor model was then used
for various catalysts to evaluate their performance under operating conditions that are
suitable in the scenario of establishing a small-scale H, production plant. Regarding the
catalyst’s performance, fast reaction kinetics gave better results under the operating condi-
tions. Catalyst 6, a Ni-based catalyst, showed superiority over all the other catalysts in CHy
conversion, of 80.76% at 923 K, 1.5 bar, S/C of 3, and CHy flow rate of 25 lit/hr. A 10.34 wt%
Ni/«- Al,O3 is preferred for CHy conversions to H; for the discussed operating conditions.

The Aspen HYSYS SMR simulation with an optimum 10.34 wt% Ni/ «- Al,O3 catalyst
at 923 K and 1.5 bar is conducive to addressing global energy problems by leading to
clean H, production methods. This method helps in reducing emissions, enhances energy
efficiency by conserving resources, and influences policies and industrial practices. These
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exercises collectively contribute to a more sustainable energy landscape and support the
evolution towards a low-carbon and ecologically responsible future.
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