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Abstract: It is a common practice in the plastics industry to compound polymers with fillers to
reduce the manufacturing cost and/or attain desired properties. By combining different fillers with
various polymer matrices, polymer composites can be tailored to achieve property combinations
which cannot easily be obtained from either the polymer matrices or the reinforcements alone. In
the past decades, different metallic (Cu, Al, Steel, etc.) and ceramic fillers (SiC, Al2O3, CuO, TiC,
TiO2, TiN, ZrO2, ZnO, ZnF2, SiO2, etc.) have been used as reinforcements in composite preparation
because of their effectiveness in reinforcing polymers. In light of the above, this research is aimed at
the fabrication and study of the basic mechanical properties of epoxy-resin composites filled with
different weight percentages of metal filler. It includes the study of the mechanical properties of
cast-iron-filler-reinforced epoxy-based polymer matrix composites. Epoxy composites containing cast
iron in different weight percentages are prepared using casting technique. Data on neat epoxy are also
included for comparison. All the tests were conducted at room temperature and according to ASTM
standards. Density, hardness (Rockwell), tensile, flexural and impact tests were conducted, and the
data were analyzed with the help of statistical charts to draw useful inferences. It was observed that
the inclusion of cast iron filler affected most of the mechanical properties of neat epoxy. The density,
hardness, impact strength, tensile and flexural properties of the developed composites exhibited a
varying trend with respect to cast iron content. The increase in cast iron content showed significant
improvement in tensile properties, hardness, impact strength and the density of the composites. The
flexural strength was found to decrease at a higher cast iron content. This research also highlights the
possible reasons for variation in the mechanical properties of developed polymer composites.

Keywords: density; hardness; tensile strength; impact strength; flexural strength; neat epoxy

1. Introduction

In the present era of technological development, the variety of composite materi-
als used in the manufacturing of various components and their areas of application are
widening continuously. They have become indispensable members of the engineering
material family along with metals, alloys, ceramics and polymers. A composite material
includes a matrix and a filler, and both possess their own characteristic properties. These
two components are immiscible in a composite, and are separated by a boundary interface
layer. Composite materials can be manufactured to have different properties based on
their need and applications. They have become an inherent part of different industrial
applications such as in construction, machine building, sports, entertainment, automobile,

Eng. Proc. 2023, 59, 200. https://doi.org/10.3390/engproc2023059200 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023059200
https://doi.org/10.3390/engproc2023059200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-0869-2876
https://orcid.org/0000-0001-7243-9029
https://doi.org/10.3390/engproc2023059200
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023059200?type=check_update&version=1


Eng. Proc. 2023, 59, 200 2 of 12

aeronautics, etc. They also permit the gradual creation of new structures and compositions,
such structural or compositional changes can avoid sharp boundaries between joined
substances and stress concentrations. The composite products are available with increased
strength and other enhanced mechanical and chemical properties.

Epoxy resins possess good mechanical, chemical and electrical properties and are
used in construction components, adhesives and in protective coatings. It is a copolymer
thermoset, made through the reaction of a resin with a polyamine hardener. Its applications
spread over a wide range, including fiber reinforced plastics and general-purpose adhesives.
The resin comprises monomers or short chain polymers with an epoxide group at both
ends. Most common epoxy resins are produced from epichlorohydrin and bisphenol-A.
The hardener is composed of polyamine monomers (such as triethylenetetramine). During
mixing, the amine groups react with the epoxide groups and a covalent bond is formed.
Each NH group reacts with an epoxide group in the resin during polymerization; the
resulting polymer is heavily cross-linked and is therefore rigid and strong.

The polymerization (curing) may be managed using temperature, the selection of
resin and hardener and the proportion of both of these compounds. The process can be
completed in a few minutes to hours. Some combinations may require heating during
the curing period, while few others benefit from time and ambient temperature. Epoxy-
based composites find wide-ranging applications as coatings, adhesives, etc., and also
as glass- and carbon fiber-reinforced composites. The epoxies’ chemistry and the choice
of commercially existing variations make it possible to cure polymers that have been
manufactured with a wide range of properties.

Epoxies possess exceptional adhesive, chemical and thermal properties, outstanding
mechanical behaviors and highly acceptable electrical properties. These behaviors can be
modified according to the requirements. In the field of electronics, some combinations
offer high thermal conductivity and insulation properties along with enhanced electrical
resistance. Materials such as wood are glued with epoxy in applications where epoxies
are employed as structural glue. The aerospace industry uses epoxy as a structural matrix,
reinforced with fibers made from glass, Kevlar, boron, etc.

Cast iron tends to be brittle, generally refers to gray iron and has carbon (2.1–4 wt.%)
and silicon (1–3 wt.%) as the main constituent elements. It possesses excellent properties
such as a low melting point, relatively good fluidity and castability, resistance to wear,
deformation and oxidation and very good machinability. The fracture of the grey cast iron
results in a grey appearance due to its graphitic microstructure. As an engineering material,
cast iron is used in a variety of industrial applications such as in construction, machinery,
automotive parts, etc. The tensile and impact capability of the grey cast iron is less than
that of steel, whereas its compressive strength is on par with low and medium carbon steel.

Cu and Al are common metal fillers used in composite reinforcement to improve
electrical and thermal conductivity. Copper (Cu) improves electrical conductivity, making
composites suitable for electronic applications, whereas aluminum (Al) enhances thermal
conductivity, thus making composites useful for the dissipation of heat. By contrast, steel
increases mechanical strength and stiffness.

Hardness, wear resistance and thermal stability are improved in composites with
ceramic fillers like SiC and Al2O3. Silicon Carbide (SiC) improves abrasion resistance
and high-temperature performance, whereas Aluminium Oxide (Al2O3) improves wear
resistance and overall durability. The specific filler material chosen is based on the desired
behavior of the composite, allowing engineers to tailor materials for specific applications in
a cost-effective manner.

Due to of its advantageous properties, cast iron is utilized as a filler material in epoxy
composites. For starters, its high density and hardness improve the structural integrity of
the composite, increasing its capability and wear resistance. Second, the heat transfer ability
of cast iron aids in heat dissipation, lowering the risk of overheating in applications such
as engine components. Furthermore, its resistance to corrosion improves the composite’s
durability in harsh environments. Furthermore, the low cost of cast iron makes it an
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economical choice. Overall, the synergy of cast iron’s mechanical, thermal, and corrosion-
resistant properties with epoxy makes it an effective filler, improving the performance and
longevity of epoxy composites in a variety of industrial applications.

2. Literature Survey

In an attempt to gauge the influence of metal filler on the characteristics of epoxy resin
for use in semi-metallic soft tools, Chung et al. [1] considered fillers such as aluminum
powder, cast iron powder and aluminum short fibers. It was observed that Al powder
provided advantages such as the improved dimensional accuracy, tensile strength, wear
resistance and thermal conductivity of semi-metallic soft tools. Cast iron filler contributed to
the tensile strength and wear resistance. Al short fibers contributed to dimensional accuracy
and thermal conductivity when compared to Al-powder-filled soft tools. It was observed
that Cu-Epoxy composites outperformed metals in terms of resistance to wear compared to
Al-Epoxy composites. This is because of its high hardness and stiffness properties.

The study conducted by Bhagyashekar and Rao [2] explains the tribological behavior
of epoxy filled with Al and Cu metallic fillers. The study revealed a “wear stabilization
phenomenon”, clearly indicating, to a lesser proportion, the effectiveness of the filler
loadings beyond the threshold value (5%). It can be seen that Cu-Epoxy composites have a
superior wear resistance compared to Al-Epoxy composites. This is because of their high
hardness and stiffness properties.

Durand et al. [3] conducted several experiments by varying the particle types (ceramic),
particle sizes and particle volume fractions within thermosetting epoxy resin. The com-
posite wear was up to 50 times lower than the neat epoxy. It was found that composites
with carbide particles (SiC and TiC) exhibited a higher wear resistance than those with
oxide particles.

M. Sudheer, K. M. Subbaya and Dayananda Jawali [4] found that epoxy resin compos-
ites reinforced with potassium titanate whisker improve the density, hardness and heat
deflection temperature of neat epoxy. A significant improvement in the tensile and flexural
properties was also shown, but only in certain combinations (5–10 wt.%).

The studies by J. Stabik, A. Dybowska, J. Pluszyñski, M. Szczepanik and Suchon [5]
demonstrated the fabrication of polymer composites with significant magnetic properties.
The compositions containing up to a 30% volume of ferrite powder could be prepared by
centrifugal casting. The viscosity increased at higher volumes of filler material. Superior
results for magnetic induction were achieved for a 30% volume of barium ferrite.

Suresha B, Chandramohan G and Sampath Kumaran P [6] concluded that reduced
friction and enhanced wear-resistance properties could be attained by adding graphite and
SiC particulate fillers. A higher resistance to sliding wear could be reached by SiC filled
glass–epoxy composite when compared to a plain glass–epoxy composite.

Z. Brito and G. Sanchez [7] have studied the influence of metallic filler on the thermo
-mechanical behavior of epoxy and determined that the filler reduces the thermal stability
of the epoxy matrix and increases its mechanical strength.

M.C Murugesh and K.Sadashivappa [8] studied the influence of the addition of filler
material such as TiO2 and graphite on epoxy. The higher the percentage of filler materials
such as TiO2 and graphite, the lower the thrust and delamination factor will be, which
they claim allows for better bonding between the filler and the matrix ensuring it has an
enhanced capacity for sustaining the force.

3. Specimen Fabrication

We used epoxy resin (LY556) as the matrix and recycled cast iron powder as the metal
filler and for reinforcement. The chips obtained during the machining of a cast iron product
were collected, cleaned and heated to remove the moisture/oil content. The next step is the
powdering process which can be performed using a vibration mill, a ball mill or a hammer
mill. The hammer mill is the best option for the powdering process and was chosen in this
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work (Figure 1). The size of the crushed cast iron powder selected in this work is 75 µm
(Figure 2). Figure 3 shows an open mold cavity for specimen preparation.
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Table 1 gives the details of samples prepared.

Table 1. Details of samples prepared.

Sample Code Matrix Filler wt.%

C0 Epoxy - -
C5 Epoxy Cast iron 5

C10 Epoxy Cast iron 10
C15 Epoxy Cast iron 15
C20 Epoxy Cast iron 20
C25 Epoxy Cast iron 25

4. Experimentation and Testing
4.1. Density

The Archimedes principle was used to determine the density of the composite speci-
men (Figure 4). The fluid used for the immersion of the composite specimen was distilled
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water maintained at room temperature, and a precision digital weighing balance was used
to find the mass (Figure 5). Readings of the measuring jar before and after the immersion
of specimen were taken and their difference was calculated. The mass of the specimen
divided by this difference will give the density of the specimen [9,10].
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4.2. Hardness

A Rockwell Hardness Tester (M-scale) was used to measure the hardness of the
fabricated composite specimen (Figure 6, Make-Saroj Engg. Udyog Pvt. Ltd., Mumbai,
India). A quarter-inch ball indenter was used for indentation. A load of 100 kg was applied
for the measurement of hardness (red reading).
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4.3. Tensile Properties

A Universal Testing Machine (Figure 7, Make-LJ Lloyd, London, UK, 20 kN capacity)
was used to find the tensile properties of the fabricated specimen. A gauge length of 50 mm
and crosshead speed of 1 mm per minute were selected for performing the tensile test.
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4.4. Flexural Properties

The flexural properties were examined with the help of a Universal Testing Machine
(Make-LJ Lloyd, London, UK, 20 kN capacity). A 3-point bending test was conducted with
a beam length of 50 mm and crosshead speed of 1 mm per minute (Figures 8 and 9). The
results were plotted using Nexygen software 4.1.
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4.5. Impact Strength

The Izod impact experiment was performed on unnotched specimens using a CEAST
pendulum impact tester (Figure 10, Max. capacity 25 J).
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4.6. Mechanical Testing Standards

Various ASTM mechanical testing standards used for the composite specimens are
provided in Table 2.

Table 2. Mechanical testing standards used for composite specimens.

ASTM Standards Properties to Be Tested

ASTM D792 [11] Density
ASTM D785 [12] Hardness (Rockwell M Scale)
ASTM D638 [13] Tensile Properties
ASTM D790 [14] Flexural Properties
ASTM D256 [15] Impact Strength

5. Results and Discussion

The characteristics of the epoxy resin were improved by the addition of a few wt.% of
cast iron into the epoxy matrix. The important factors which affect the mechanical behavior
of polymer composites are the dimension of the filler material, filler–matrix interface
adhesion and loading of the filler material. The interplay between these three factors cannot
be separated, and various trends in the effects of the cast iron on composite properties were
observed as a result.

5.1. Density

The mass–density of the composites is contingent on the relative proportion of the
matrix and the reinforcing materials. The rule of mixture is a mathematical method which
is widely used to define the theoretical density of a polymer composite (Table 3). The
density variation with respect to cast iron content is shown in Figure 11. From the figure, it
is apparent that, as the cast iron content in the composite increases, the mass–density of the
composite also increases, this is because of the addition of the highly dense cast iron filler
into the epoxy resin. The experimental density values are lower, in the range of 8% to 13%,
than the theoretical value calculated using the rule of mixture. This is because of defects
such as voids and pores created during the process of fabricating the composite. Similar
observations were made by Maruthi et al. [16] in the case of a hybrid banana–jute phenol
formaldehyde composite.
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Table 3. Density of epoxy/CI composites.

Sample Code Rule of Mixture, (gm/cc) Experimental, (gm/cc)

C0 1.17 1.17
C1 1.5469 1.3337
C2 1.773 1.6265
C3 2.0142 1.7818
C4 2.177 1.9647
C5 2.4363 2.1273
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Figure 11. Effect of cast iron content on the density of neat epoxy.

The fatigue resistance, resistance to water penetration and weathering are lowered
owing to the existence of voids in the composites. The void content is related to the
composite quality and a composite of high quality must have fewer voids. The presence of
voids in composites cannot be avoided, especially while using the hand layup method of
specimen fabrication.

5.2. Hardness

The hardness of neat epoxy is found to be enhanced by adding a cast iron filler
(Figure 12). This is due to the uniform distribution of the cast iron in the epoxy matrix. The
hardness of the epoxy composites improved significantly as a consequence of the addition
of cast iron. It is apparent that a CI filler content of 25% in an epoxy composite shows a
higher hardness value, in the range of 3% to 11%, than the other composites; this is because
a larger amount of cast iron filler has filled the gap and increased the compactness of the
fiber and the matrix.
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5.3. Tensile Properties

Figure 13a depicts the changes in tensile strength observed in composite materials after
the addition of a cast iron filler. It is clear that, as the percentage of cast iron filler increases,
so does the tensile strength, which ranges from 7% to 24%. Notably, the composite with
25% of filler has a higher strength, owing to the major impact of the bonding force at the
resin–filler interface.
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Figure 13. Effect of cast iron content on the (a) tensile strength, (b) tensile modulus and (c) elongation-
at-break of epoxy composite.

The tensile performance of the composites increases in lockstep with the quantity of
cast iron filler in the epoxy. This happens because the weight of the metallic filler displaces
more air bubbles, effectively reducing their presence in the mixture. The increased density
of the cast iron filler contributes significantly to this result by assisting in the elimination of
air bubbles. Furthermore, the metal filler’s irregular shape promotes a stronger bonding
force at the material’s resin–filler interface.

The tensile modulus (Figure 13b) data show that the composite containing 25% of cast
iron filler has a significantly higher modulus than the other composites, with increases
ranging from 2% to 15%. Conversely, (Figure 13c) as the quantity of cast iron filler in
the composite increases, the elongation at the point of fracture decreases. The increased
modulus detected in the epoxy composite with 25% of filler content denotes superior
stiffness. This increase in the tensile modulus can be attributed to the existence of more
rigid cast iron filler particles. It is positive that we detected that, as the filler content
increases, there is a noticeable decrease in ductility in the composites, and elongation was
also found to decrease with an increase in filler content at the interface [17].

5.4. Flexural Properties

The flexural test determines a material’s ability to withstand a bending force applied
at a right angle to its longitudinal axis (Figure 14a). Flexural strength was observed to
reduce with an increase in cast iron content in the range of 5% to 30%. This can be ascribed
to the fact that an increase in the cast iron filler content of an epoxy composite may alter the
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type of failure from ductile to brittle [18]. Furthermore, the cast iron content creates micro
porosity in a small number of the composites. Pramod et al. [17] made similar observations.
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Figure 14. Effect of cast iron content on the (a) flexural strength and (b) flexural modulus of an
epoxy composite.

Figure 14b shows the flexural moduli of a neat epoxy and a filler content–epoxy
composite. It is apparent that, as the filler content in the epoxy composite increases, the
flexural modulus also increases in the range of 2% to 12%. This is due to an increase in the
proportion of the hard and brittle phases in the cast iron filler in the epoxy matrix [19].

5.5. Impact Strength

The impact behavior and overall toughness of an epoxy polymer are directly related.
The Izod impact test was conducted with pendulum-type impact loading to check the
response of a standard composite specimen. The kinetic energy expended by the pendulum
in breaking the test specimen was observed. The impact strength values are shown in
Figure 15. The impact strength of neat epoxy is less than that of all other specimens.
It is apparent that, as the cast iron filler content increases in an epoxy composite, the
impact strength also increases in range of 7% to 23%. The epoxy composite with 25% cast
iron content shows higher impact strength than the other composites. Cast iron particles
dispersed well within the epoxy resin matrix, resulting in a strong interfacial connection.
This strong interfacial bond between the fiber matrix and the iron filings contributed to the
material’s increased impact resistance, which is consistent with previous research [20–23].
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6. Conclusions

This study was useful in determining the impact of incorporating cast iron filler into
epoxy resin and examining its influence on material behavior. The proportion of cast
iron and the mechanical behavior of the resulting epoxy composites were found to have
a clear correlation. Cast iron, in particular, demonstrated its prowess as a filler material
by significantly improving the density, hardness and tensile properties of epoxy resin
composites. The addition of highly dense cast iron to pure epoxy resulted in an increase in
the overall density of the epoxy composite. However, the occurrence of voids within the
composites had a significant impact on selected mechanical properties and the composite’s
performance in its intended application. Due to voids within the composites, factors such
as fatigue resistance, resistance to water ingress and resistance to weathering decreased.
Furthermore, increasing the cast iron content was promoted to enhance the hardness of
the epoxy composites. In particular, the addition of high-strength cast iron reinforcements
aided in the creation of a network structure, increasing the overall hardness of the epoxy
composites. Adding cast iron improved the tensile behavior of the epoxy composites
significantly. Notably, the flexural modulus of pure epoxy was discovered to be the lowest,
while it increased for other specimens containing various resin–filler combinations. It
is worth noting that, in contrast, as the cast iron content increased, the flexural strength
decreased. Furthermore, when related to all other specimens, the impact strength of neat
epoxy was discovered to be inferior, with a noticeable improvement in impact strength
with an upsurge in cast iron content. This study emphasizes the critical role that cast iron
can play as a reinforcing and toughening agent in thermosetting resins like epoxy. From
the above results it is apparent that the epoxy composite with 25% of cast iron filler has
the potential to be used in light-load applications such as car door panels, table tops and
in furniture.
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