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Abstract: Pharmaceutically important isoxazoles are within the wide range of heterocycles. The
isoxazole ring, being five-membered, is also found in many bioactive natural products in addition to
synthetic drugs. Many significant properties are exhibited by synthetically modified isoxazoles. Fused
isoxazoles have widely shown their therapeutic potential as anticancer, insecticidal, antibacterial,
antituberculosis, antifungal, antibiotic, antitumor, and antiulcerogenic agents. A variety of strategies
are employed for the synthesis of these compounds, which are known for their pharmacological
importance. Their synthesis is here reviewed. Synthesized isoxazoles have appeared as good
forerunners for many other different molecules. This review summarizes the various synthesis
approaches described so far for isoxazoles, providing a detailed study of their synthesis process.
Substituted isoxazoles have been well discussed in the literature for their significant biological
activities. This review is mainly focused on the synthesis of fused isoxazoles.
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1. Introduction

A heterocyclic ring containing nitrogen along with oxygen has shown significance
in pharmaceutical and medical chemistry. The preparation of molecules that are simple
and possess contrasting functions because of the different heterocycles they contain is
valuable in the field of heterocycles and their chemistry. Compounds containing nitrogen
and oxygen include oxazole, isoxazoles, etc. Isoxazoles belong to an important class of
heterocyclic compounds containing electronegative nitrogen and oxygen atoms and sp2
hybridized carbon atoms. Isoxazoles have been used as hydrogen bond donors or accep-
tors. Fused isoxazoles have displayed their utility in the pharmacological field, showing
various biological activities, namely, anti-cancer, anti-microbial, antioxidant, antihyperten-
sive, anti-inflammatory, and analgesic activities. An important antipsychotic activity was
described for risperidone, and anticonvulsant activity was reported for monoamide. This
has promoted a constant effort to optimize the synthesis of this kind of molecules.

Fused isoxazoles are a class of heterocyclic compounds that consist of an isoxazole
ring fused with another aromatic or non-aromatic ring. Fused isoxazoles were found to
show some unique structural properties, as their five-membered ring system can lead to
the formation of specific angles in small molecules, promoting their interaction with the
target, a property that can barely be observed for molecules containing six-membered rings.
Medicinal chemists can modify different parts of the isoxazole molecule to fine-tune its
properties, such as potency, selectivity, and pharmacokinetics, and optimize its therapeutic
potential. The structural diversity and flexibility of fused isoxazoles allow for the design of
compounds with high specificity for particular biological targets.
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This is crucial for minimizing off-target effects and reducing potential side effects in pa-
tients. Interestingly, these properties were also found for naturally occurring ibetonic acid,
along with some marketed drugs such as flucloxacillin, cloxacillin, valdecoxib, danazol, and
dicloxacillin. In the last few years, fused isoxazole was reported as a bioactive compound
with antibacterial (Figure 1A), antifungal (Figure 1B), anti-inflammatory (Figure 1C), and
anti-tuberculosis activities (Figure 1D) [1]. Fused isoxazoles can be optimized to improve
their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.
This would help in ensuring that a compound can be effectively administered and metabo-
lized in the body. Libraries of fused isoxazole derivatives can be used in high-throughput
screening programs to discover new lead compounds for various therapeutic targets. Their
diversity expands the range of potential drug candidates. Fused isoxazoles can be used
in combination therapies, where multiple drugs are used simultaneously to enhance their
efficacy and reduce the likelihood of resistance development. In summary, fused isoxazoles
represent an important class of compounds in pharmaceutical and medicinal research due
to their diverse biological activities, their potential as precursors in drug design, and their
relevance in treating a wide range of diseases. Their continued study and development
hold promise for the discovery of novel therapeutic agents in the future.
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Isoxazole is also found in various natural compounds, often as a part of more 
complex structures. For example, bilobalide and ginkgolides are neuroprotective and anti-
inflammatory terpenes [2], pilocarpine is an alkaloid used in ophthalmology to treat 
glaucoma [3], lupine alkaloids have insecticidal activity and also play a role in plant–
herbivore interactions [4], 2-phenyl-4-quinolone (PQ) plays a pivotal role in the virulence 
of bacteria [5], and isoginkgetin is a flavonoid with an isoxazole ring studied for its anti-
inflammatory and anticancer properties [6]. These examples showcase the diverse range 
of natural compounds that contain the isoxazole ring. It is worth noting that while 
isoxazole is a relatively uncommon structural element in natural products, it plays 
important roles in the bioactivity of these compounds. The isolation and study of such 
natural products can lead to the development of novel drugs and provide insights into 
their ecological functions. Hence, to showcase the importance of fused isoxazole, a survey 
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Isoxazole is also found in various natural compounds, often as a part of more com-
plex structures. For example, bilobalide and ginkgolides are neuroprotective and anti-
inflammatory terpenes [2], pilocarpine is an alkaloid used in ophthalmology to treat
glaucoma [3], lupine alkaloids have insecticidal activity and also play a role in plant–
herbivore interactions [4], 2-phenyl-4-quinolone (PQ) plays a pivotal role in the virulence
of bacteria [5], and isoginkgetin is a flavonoid with an isoxazole ring studied for its anti-
inflammatory and anticancer properties [6]. These examples showcase the diverse range of
natural compounds that contain the isoxazole ring. It is worth noting that while isoxazole
is a relatively uncommon structural element in natural products, it plays important roles in
the bioactivity of these compounds. The isolation and study of such natural products can
lead to the development of novel drugs and provide insights into their ecological functions.
Hence, to showcase the importance of fused isoxazole, a survey on the recent progress in
the synthesis of fused isoxazoles, particularly over the last few years, is presented.

2. Results and Discussion

H. Ali Dondas et al. studied X=Y-ZH systems as potential 1,3-dipoles in the formation
of cyclic nitrones from alkenyl oximes (Scheme 1). In their method, substituted alkenyl
oxime (1) was cyclized using phenylselenyl chloride or phenyl-selenyl bromide in the
presence of a silver salt to obtain cyclic nitrone salts that then were treated with anhydrous
potassium carbonate and CH2Cl2 at 25 ◦C for 16 h to produce nitrones. Then, the obtained
nitrones were treated with N-methylamine and acetonitrile at 80 ◦C for 9 h to obtain
isoxazoles (2,3). The reactions involved in this process were regiospecific cyclization and
stereospecific intramolecular cycloaddition [7].
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Abutariq Taher et al. studied the reaction of an imidazo-[4,5-c]-isoxazole-6-carboxylate
with dimethyl acetylene dicarboxylate leading to the formation of the first example of
a [1,4]-diazepino-[2,3-c]-isoxazole (Scheme 2). Imidazo [4,5-c]-isoxazole-6-carboxylate (4),
in the presence of DMAD and with an attack at C-2, produced a 1H-[1,4,4]diazepino [2,3-c]
isoxazole (5) via a ring-opening reaction [8].
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Scheme 2. Synthesis of 1H-[1,4,4] diazepino[2,3-c]isoxazole.

Padmavathi et al. worked on the synthesis of some fused pyrazoles and isoxazoles
(Scheme 3). Decarboxylation of 6-carbethoxy-3,5-diarylcyclohexenones (6) resulted in the
formation of 3,5-diaryl-2-cyclohexenones through the Knoevenagel condensation of ethyl
acetoacetate and 1, 3-diaryl-2-propen-1-one in the presence of sodium ethoxide. 3,5-diaryl-
2-cyclohexenones along with ethyl formate in the presence of sodium chloride produced 6-
hydroxymethylene-3,5-diaryl-2-cyclohexenones via the Claisen condensation reaction. This
cyclocondensation reaction, followed by a reaction with hydrazine hydrate/hydroxylamine
hydrochloride in AcOH, resulted in 4,5-dihydrobenzo-[3,4-d] pyrazole/isoxazole (7), with
a 66% yield. Aromatization of pyrazole and isoxazole with DDQ produced fused benzopy-
razole/isoxazole (8) [9].
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Tommo Matsuura et al. worked on the molecular sieve-promoted cycloconden-
sation of hindered, aromatic nitrile oxides and cyclic diketones under mild conditions
(Scheme 4). The reaction, conducted using active nitrile oxide (9) and diketone (10) as
an additive, proceeded at a high rate in mild conditions, resulting in the production of
3-(2,4,6-trimethylphenyl)-6,7-dihydro-1,2-benzoxazol-4(5H)-one (11) with a 79% yield [10].

Jeffrey W. Bode et al. studied the facile construction and divergent transformation of
polycyclic isoxazoles, obtaining direct access to polyketide architectures (Scheme 5). In this
reaction, the cyclocondensation of nitrile oxides (12) and 1,3-diketones (13) produced poly-
cyclic isoxazole (14) with a 77% yield in the presence of hydroxylamine hydrochloride [11].



Eng. Proc. 2023, 59, 222 4 of 11

Eng. Proc. 2023, 59, 222 4 of 12 
 

 

proceeded at a high rate in mild conditions, resulting in the production of 3-(2,4,6-
trimethylphenyl)-6,7-dihydro-1,2-benzoxazol-4(5H)-one (11) with a 79% yield [10]. 

 
Scheme 4. Synthesis of benzene ring-fused isoxazole. 

Jeffrey W. Bode et al. studied the facile construction and divergent transformation of 
polycyclic isoxazoles, obtaining direct access to polyketide architectures (Scheme 5). In 
this reaction, the cyclocondensation of nitrile oxides (12) and 1,3-diketones (13) produced 
polycyclic isoxazole (14) with a 77% yield in the presence of hydroxylamine hydrochloride 
[11]. 

 
Scheme 5. Synthesis of polycyclic isoxazoles. 

Irini Akritopoulou-Zanze et al. studied the synthesis of novel fused isoxazoles and 
isooxazolines by sequential Ugi/INOC and [2+3] cycloaddition reactions (Scheme 6). A 
carboxylic acid-bearing nitro group, allyl or propargyl amine, and various isocyanides and 
aldehydes were used for the synthesis of fused isoxazoles (15). This reaction was 
conducted according to Mukaiyama in the presence of POCl3 and an excess of Et3N in 
CHCl3. The reaction only achieved a 50% conversion of the starting materials [12]. 

 
Scheme 6. Synthesis of six- and seven-ring isoxazoles. 

V. Padmavathi et al. prepared 5,7-diaryl-6,7,8-trihydrobenzo[3,4-d] isoxazolin-1-one 
(17) by the Knoevenagel reaction of ethyl acetoacetate and 1,3-diaryl -2-propen-1-one (16) 
(Scheme 7). This reaction was carried out with hydroxylamine 
hydrochloride/hydrazine/hydrate/phenyl hydrazine in 10% NaOH and ethanol and 
resulted in a 61% yield of the product (17) [13]. 

 

Scheme 4. Synthesis of benzene ring-fused isoxazole.

Eng. Proc. 2023, 59, 222 4 of 12 
 

 

proceeded at a high rate in mild conditions, resulting in the production of 3-(2,4,6-
trimethylphenyl)-6,7-dihydro-1,2-benzoxazol-4(5H)-one (11) with a 79% yield [10]. 

 
Scheme 4. Synthesis of benzene ring-fused isoxazole. 

Jeffrey W. Bode et al. studied the facile construction and divergent transformation of 
polycyclic isoxazoles, obtaining direct access to polyketide architectures (Scheme 5). In 
this reaction, the cyclocondensation of nitrile oxides (12) and 1,3-diketones (13) produced 
polycyclic isoxazole (14) with a 77% yield in the presence of hydroxylamine hydrochloride 
[11]. 

 
Scheme 5. Synthesis of polycyclic isoxazoles. 

Irini Akritopoulou-Zanze et al. studied the synthesis of novel fused isoxazoles and 
isooxazolines by sequential Ugi/INOC and [2+3] cycloaddition reactions (Scheme 6). A 
carboxylic acid-bearing nitro group, allyl or propargyl amine, and various isocyanides and 
aldehydes were used for the synthesis of fused isoxazoles (15). This reaction was 
conducted according to Mukaiyama in the presence of POCl3 and an excess of Et3N in 
CHCl3. The reaction only achieved a 50% conversion of the starting materials [12]. 

 
Scheme 6. Synthesis of six- and seven-ring isoxazoles. 

V. Padmavathi et al. prepared 5,7-diaryl-6,7,8-trihydrobenzo[3,4-d] isoxazolin-1-one 
(17) by the Knoevenagel reaction of ethyl acetoacetate and 1,3-diaryl -2-propen-1-one (16) 
(Scheme 7). This reaction was carried out with hydroxylamine 
hydrochloride/hydrazine/hydrate/phenyl hydrazine in 10% NaOH and ethanol and 
resulted in a 61% yield of the product (17) [13]. 

 

Scheme 5. Synthesis of polycyclic isoxazoles.

Irini Akritopoulou-Zanze et al. studied the synthesis of novel fused isoxazoles and
isooxazolines by sequential Ugi/INOC and [2+3] cycloaddition reactions (Scheme 6). A
carboxylic acid-bearing nitro group, allyl or propargyl amine, and various isocyanides and
aldehydes were used for the synthesis of fused isoxazoles (15). This reaction was conducted
according to Mukaiyama in the presence of POCl3 and an excess of Et3N in CHCl3. The
reaction only achieved a 50% conversion of the starting materials [12].
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V. Padmavathi et al. prepared 5,7-diaryl-6,7,8-trihydrobenzo[3,4-d] isoxazolin-1-
one (17) by the Knoevenagel reaction of ethyl acetoacetate and 1,3-diaryl -2-propen-
1-one (16) (Scheme 7). This reaction was carried out with hydroxylamine hydrochlo-
ride/hydrazine/hydrate/phenyl hydrazine in 10% NaOH and ethanol and resulted in a
61% yield of the product (17) [13].
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Sarvesh Kumar et al. studied the heteroaromatic annulation of 10,11-dihydro-11-
[bis(methylthio)methylin]dibenzoxepino[4,5]-fused heterocycles (Scheme 8). The reac-
tion of 10,11-dihydro-11-one with sodium hydroxide with carbon disulfide at 0 ◦C in
THF, along with alkylation with methyl iodide, produced an α-oxoketene dithioacetal
(18). When compound (19) reacted with hydroxylamine hydrochloride in the presence
of sodium ethoxide in refluxing ethanol, a 3-ethoxydibenzenopino[4,5-c] isoxazole (20)
was obtained, whereas in the presence of a non-nucleophilic base like barium hydroxide,
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3-(methylthio)dibenzoxepino-[4,5-c]isoxazole was produced with an 86% yield, and in the
presence of sodium acetate–acetic acid buffer, a regioisomeric 3-(methylthio)-dibenzoxepino
isoxazole (21) was obtained [14].
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(23) in the presence of hydroxylamine hydrochloride (Scheme 9) [15].
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of selected fused isoxazoles (Scheme 10). In this case, isoxazole was prepared by the
reaction of 5,5-dimethylcyclohexane-1,3-dione (27) with aldehyde, obtaining 2-arylidene-
5,5-dimethylcyclohexane-1,3-dione (28). In this reaction, nucleophilic reagents were used.
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of glacial acetic acid yielded 6,6-dimethyl-3-(substitutephenyl)-3,3a,6,7-tetrahydro-5H-2,1-
benz-isoxazol-4-one (29) [16].
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Inga Cikotiene studied the intramolecular iodine-mediated oxygen transfer from nitro
groups to C=C bonds (Scheme 12). Thieno[2,3-c] [1,2] isoxazole (33) was prepared using
ortho-alkynyl nitrobenzene (32) in the presence of a gold bromide and iridium hydride
complex [18].
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Mariappan Babu et al. worked on isoxazoles incorporating N-substituted decahydro-
quinolines (Scheme 13). 1-acetylcyclohexane (34), in a condensation reaction with benzy-
lamine and benzaldehyde and piperidine, produced 1-benzyl-2-phenylocahydroquinolin-
4(1H)-one. When this compound (35) was refluxed with hydroxylamine hydrochloride and
sodium acetate, 3-aryl-4-phenyl-5-benzyl-decahydro-isoxazolo[4,3-c]quinolines (36) was
obtained [19].

Zigmee T. Bhutia et al. worked on the in situ mechanochemical synthesis of nitrones
followed by 1,3 dipolar cycloaddition, providing a catalyst-free, “green” route to obtain cis-
fused chromano-[4,3-c]-isoxazole (37) (Scheme 14). Grinding an equimolar mixture of o-allyl
salicylaldehyde and phenylhydroxylamine resulted in nitrones, and then intramolecular
cycloaddition of the nitrones yielded compound (38) [20].
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Yang Li et al. studied the facile synthesis of 5-bromotropono[c]-fused isoxazole
(Scheme 15). The tropone-fused heterocycle 3-acetyl-5-bromotropolone (39) in the presence
of hydroxylamine hydrochloride and methanol as a solvent produced the tropane-fused
isoxazole 5-bromo-3-methyltropono[d] isoxazole (40) with a 70% yield [21].
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Scheme 15. Synthesis of 5-bromo-3-methyltropono[d] isoxazole.

Masashi Shigenobu et al. studied the pallidum-catalyzed directed C-H arylation
of isoxazoles at the fifth position (Scheme 16). The C5 arylation of tetrahydrobenzo[c]
isoxazole (41) and 4-idotoluene (42) in the presence of [PdCl2(MeCN)2 at 100 ◦C for 24 h
resulted in the production of 3-phenylbenzoisoxazole (43) with an 86% yield [22].
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Scheme 16. Synthesis of a fused isoxazole.

Wen-Chang Chen et al. worked on the synthesis of fused isoxazoles and isoxazolines
via intramolecular nitrile oxide cycloaddition (Scheme 17). Dimethyl 2-propargyl-2-(2-nitro-
1-aryl/alkylethyl) malonates (44), treated with ter-butoxide and Yamaguchi reagents in
DCM at −78 ◦C, produced a bicyclic isoxazole after 24 h with a yield of 65%. In optimum
conditions, these bicyclic isoxazoles (45) were obtained with a 95% yield [23].
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Scheme 17. Synthesis of a bicyclic isoxazole.

Shakil N. Afraj et al. studied multicomponent coupling reactions and intramolecular
nitrile oxide–alkyne cycloaddition towards isoxazole(3,4)-pyrrolidines (Scheme 18). Al-
doxime, N-chlorosuccinimide (46), and triethylamine, reacted at room temperature for 2 h in
DCM, resulted in (4S,8As)-3,4-diphenyl-6,7,8,8a-tetrahydro-4H-isoxazolo[3,4-a]pyrroli-zine
(47) with a 72% yield [24].
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Scheme 18. Synthesis of isoxazole.

Victoria V. Grishko et al. worked on the preparation of novel fused azole derivatives
(Scheme 19). Lupane-type betulone (48) yielded betulin by a one-step regioselective bio-
transformation. An oxime (49) treated with acetyl chloride under reflux with pyridine
produced the compound 28-acetoxy-5′-methylisoxazolo [3′,4′:1,2]-1-oxolup-20(29)-ene (50),
which yielded compound (51) after treatment with 5% KOH in EtOH [25].
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Wei Xiao et al. studied regio- and diasterodivergent [4+2] cycloadditions with cyclic 2,4-
dienones catalyzed by a cinchona-derived amine (Scheme 20). In this reaction, alkylidene
isoxazole-5-(4H)-one was prepared using an aromatic aldehyde (53) and a heteroaryl or
2-styryl group in the presence of 2,4-dienone (52). The reaction was a [4+2] cycloaddition
reaction. In the preparation of the diasterodivergent Z–4-alkylideneisoxazol-5(4H)-one (54),
very simple starting materials were used [26].
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Mansour and co-workers studied the oxidative conversion of oximes (55) into 3-aryl
isoxazoles (56) (Scheme 21). Unsaturated oximes treated with oxidants like manganese
dioxide, copper chloride, and acetonitrile under reflux to get compound (56) with a 50%
yield. Other attempts were performed using solvents like DMF or THF, which reported
lower yields [27].
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short reaction time, simple cyclization reactions, easy scale-up, and high yield. In few
reported methods, green solvents such as water and mild solvents such as ethanol and
methanol were used to obtain the target compounds. Also, in few examples, the reactions
were conducted at room-to-moderate temperature. Regarding the disadvantages, a few
of the target compounds were synthesized by using petroleum-based solvents such as



Eng. Proc. 2023, 59, 222 10 of 11

benzene, toluene, dichloromethane, acetonitrile, and isopropyl alcohol. Hence, this review
paper provides insights for selecting an ecofriendly approach for the design and synthesis
of the desired fused isoxazole compounds.

3. Conclusions

This review article describes various synthesis methods and structural modifications
of fused isoxazole derivatives. A general method for the generation of fused isoxazoles
was reported. The present work shows that the main challenges are developing ecofriendly
approaches that avoid toxic solvents and reagents, decreasing the reaction time, facilitating
the reaction scale-up, and increasing the yield. This review also helps select the optimal
method to solve problems associated with specific sites or positions within a molecule that
possesses multiple active sites or functional groups.
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