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Abstract: Graphene oxide (GO) and reduced graphene oxide (rGO) are well known for their excep-
tional characteristics in a variety of applications. Reduced graphene oxide differs from graphene
oxide in terms of morphological aspects, quality, functionalized groups, and crystallinities. Several
attempts to synthesize GO and rGO have been documented in studies. The paper discussed the
numerous ways to synthesize GO and rGO, and a literature review revealed that Hummers’ technique
stands out as the most commonly used. Graphite is mixed with potassium permanganate, sodium
nitrate, and strong sulfuric acid to make GO. Notably, Hummers’ technique has the advantage of
faster synthesis and higher GO quality. The paper discusses several investigations, including the
morphological and structural characteristics, chemical bonding information, and mechanical proper-
ties of GO and rGO. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray
Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and the Vickers Hardness Tester
are generally used to study these characteristics. The FTIR analysis revealed that the most common
peaks in both GO and rGO were found to be associated with the O-H, C=O, C-OH, and C-O functional
groups. XRD examination, on the other hand, revealed a diffraction peak at 2θ = 10.2◦, indicating
oxidized graphite in the case of GO, as well as a graphitic peak at 2θ = 26.3◦, indicating graphitic
graphite. Furthermore, the addition of GO and rGO into ceramics or polymers was discovered
to cause significant changes in their mechanical characteristics, such as tensile strength, Young’s
modulus, and others. This demonstrates the revolutionary potential of graphene in improving the
performance of composite materials.

Keywords: graphene oxide (GO); synthesis; SEM; FTIR; XRD

1. Introduction

Graphene oxide (GO) is a material that attracts considerable attention in the scientific
community due to its unique physical and chemical characteristics. Its properties can
be tuned by varying the degree of oxidation, the size and shape of the flakes, and the
chemical functionalization, which makes it a versatile material with great potential for
various applications. Graphene-based material has excellent mechanical [1], thermal [2,3],
and electrical [1,4] properties, making it a potential candidate for use in energy storage [5],
biosensors [5], biomedical engineering [6], hydrogen storage, displays, and solar cells [7,8].
GO has potential application in environmental remediation due to its ability to absorb
various pollutants, such as heavy metals and organic contaminants, making it a promising
material for water purification and desalination [9].

The synthesis of graphene oxide (GO) was first carried out by Brodie [10] and modified
by Hummers [11]. The molecular structure of GO, according to these authors, is that of a
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carbon compound with oxygen functional groups bonded to carbon atoms in the hexagonal
plane [12]. Graphene has a flexible structural shape, remarkable mechanical strength, and
zero bandgaps [13,14].

2. Method for Synthesis of GO and rGO
Synthesis of GO and rGO

Reduced GO is obtained by the removal of oxygen from the GO structure. GO
is produced via methods such as Hummers’ (oxidation with sulfuric acid, potassium
permanganate) and Brodie’s (nitric acid oxidation) [14]. By using sulfuric acid to raise the
mixture’s acidity and multiple aliquots of solid KClO3 throughout the reaction in 1898,
Staudenmaier improved Brodie’s process. This method, known as Staudenmaier’s method,
produces hazardous ClO2 gas, which breaks down in the air and causes explosions [15].

Alghyamah et al. (2022) created rGO by reducing GO in situ inside the PEO matrix
while employing L (+) Ascorbic acid as a green reductant [16]. Chaiyakun et al. (2012)
synthesized the GO nanosheet using Hummers’ method by mixing natural graphite powder
and sodium nitrate with sulfuric acid and stirring with potassium permanganate [17].
Ban et al. (2012) used strong oxidizing agents, stirred with a magnetic stirrer, added
potassium permanganate, and stirred for three days to obtain GO [18]. Zhou et al. (2013)
employed Hummers’ method, involving graphite, H2SO4, NaNO3, KMnO4, heat, water,
and centrifugation, to produce graphene oxide (GO) powder [19]. Lavin-Lopez et al.
(2017) created rGO by combining thermal and chemical processes, employing hydrazine
and ascorbic acid as reducing agents. The products’ names were Hydrazine Multiphase
Reduced Graphene Oxide (HMP-rGO) and Ascorbic acid Multiphase Reduced Graphene
Oxide (AMP-rGO) [20]. Graphite modified via Hummers’ method; mixed with KMnO4,
H2SO4; water, H2O2 added for brown GO solution. Filtered, washed, and thermally
reduced to rGO at 750 ◦C with argon [21].

3. Characterization
3.1. Scanning Electron Microscope (SEM)

Scanning electron microscopy (SEM) determines surface morphology and the number
of graphene layers. This is achieved by focusing a beam of energetic electrons onto the
sample. The morphological characteristics of GO and rGO can be explained using SEM [22].
Handayani et al. (2019) analyzed GO samples using SEM at 10k, 25k, and 40k magnifica-
tions, revealing thicker edges due to oxygen functional groups. EDS (Energy Dispersive
X-ray Spectroscopy) confirmed carbon and oxygen composition (shown in Figure 1) [1].
Analysis of graphite, GO, and rGO reveals platelet-like crystals, wrinkled flakes, and disor-
dered crumpled sheets, respectively, through SEM (Figure 2) [23,24]. Cheng-an et al. (2017)
used SEM to observe the lamella structures of GO composite films. Increased GO concen-
tration led to organized and stratified deposition, with well-organized GO stacks in 50%
GO composite film [25]. During a comparison between graphite powder and rGO using
SEM at 10k magnification, lemon juice was found to be effective in reducing rGO thickness
from 26.4–29.3 nm [26]. Long-term ball milling results in shrinking ZnO particle size and
damaged hexagonal crystals. In the hybrid nanocomposite, ZnO nanoparticles adhere to
the rGO surface [27]. A study of the surface morphology of pristine GO foils revealed
smooth surface images at low and high magnification, with an average roughness profile of
0.6 µm at a sub-micrometric scale [28]. Analyzing fractured surfaces in composites. Plain
cement showed cracks passing through hydration products, while GO-cement displayed
crack deflection, impeding crack propagation on increasing load [29]. Salinization makes
GO shorter and smoother [30]. An SEM image of rGO that had been dried at 80 ◦C for a
day shows a folded shape typical of a few-layer rGO (thickness 10 nm), huge dimensions
(>100 nm), and re-stacked layers [31]. While analyzing GO papers through SEM, thicker
papers showed increased roughness due to flake stacking and blockage of the flow path,
resulting in wrinkles and surface roughness [32]. SEM reveals unevenly scattered rGO on
fibers and displays cycle-dependent accumulation, color change, and dispersed rGO [33].
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While GO nanosheets with characteristic folds and wrinkles show that graphite oxide
exfoliation successfully produced 2D nanosheets [34].
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3.2. FTIR Spectroscopy

FTIR (Fourier transform infrared) is the most common form of infrared spectroscopy.
FTIR spectra analysis was performed to investigate the structure and functional groups of
the materials [35]. FTIR analysis of rGO showed O-H (~3464 cm−1), C=O (~1639 cm−1),
C-OH (~1288 cm−1), C-O (~1003 cm−1) peaks, with weak C=C (~1493 cm−1), indicating GO
oxidation. Reduction weakens/eliminates peaks over time [1,36]. Peaks at 1081 cm−1 (C-O
bond), 1630–1650 cm−1 (C=C bond), and a broad peak at 2885–3715 cm−1 (O-H stretch),
confirm GO’s absorbent nature (Figure 3) [17,18]. The peak at 2135 cm−1 identifies the
Si-H group [21]. The broad peak from 2885 cm−1 to 3715 cm−1 indicated absorbed water,
supporting GO’s high absorbency and gel-like behavior [37,38]. FTIR spectroscopy assesses
oxygen-functional group integration in carbon lattice, identifying key modes such as C-O,
C-OH, O-H vibrations, C=O, and C-H stretching vibrations [39]. Peaks at 1726 cm−1,
1115 cm−1, and 1074 cm−1 confirm graphite oxidation and hydrophilicity [40]. GO exhibits
C-OH (3407 cm−1) and -COOH (1730 cm−1) groups [41]. FTIR analysis reveals GO has
C-O, C-O-C, C-OH, C=O, and O-H peaks. rGO reduced (1160 cm−1, 1550 cm−1). SRGO
sulfonated (1034 cm−1, 1160 cm−1). The results suggest the successful sulfonation of rGO,
enhancing solubility, stability, and dispersibility in polar solvents (Figure 3) [42]. GO com-
posite exhibits MgO-water interaction, decreased GO peaks, hydroxyl stretching/bending,
and carbonate symmetry [43]. GO and rGO undergo hydroxyl, carboxylic, and carbonyl
group elimination with heating, leading to exfoliation in 7 min [44].

3.3. X-ray Diffraction (XRD)

XRD uses the crystal diffraction of X-rays to study the crystalline structure, lattice
parameters, phase analysis, and texture. The peak position reveals composition, while
the intensity provides structural and phase information. [45]. The most common peak in
graphite is 2θ~26.6◦ [38], for GO it is 2θ~10.2◦ [34,38,46–48], and for rGO it is 2θ~23◦ [48].
Sharma et al. (2017) used XRD with a copper rotating anode and found that GO had a
primary peak at (001) with a d-spacing of 1.45 nm, while rGO had a smaller d-spacing of
0.379 nm due to the removal of oxygen-containing functional groups. The large peak at
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2θ = 19.6◦ in rGO suggests incomplete oxidation (Figure 4a) [5]. In some results, graphite
shows peaks at 50.68◦ (101), 54.62◦ (004), 59.84◦ (110), and 71.96◦ (112), indicating its
crystalline structure. GO exhibits a sharp peak at 10.24◦ (002) with an interplanar distance
of 0.80 nm [18,39]. An analysis of graphite, graphene oxide (GO), and reduced graphene
oxide (rGO) shows graphite’s strong peak at 26.62◦ and confirms its well-organized layered
structure; GO showed a shifted peak at 9.03◦, indicating complete oxidation and rGO
had a wider peak at 24.10◦, indicating restored conjugation (Figure 4b) [23]. GO also
revealed turbostratic disorder with a peak 2θ = 43◦ [49]. XRD analysis of low GO shows
a 002 reflection at 26.3◦, suggesting a 12.9 nm thickness and 38 layers of the graphite-like
structure [50]. For graphitic layers, coal shows peaks at 26.05◦, 41.51◦, and 55.97◦ (002, 101),
respectively. Successful synthesis from coal is confirmed by the 14.26◦ (001) and 42.25◦ (100)
peaks on the GO spectrum [51]. GO exhibits a peak at 10.57◦ and a wide range (15–25◦),
corresponding to stacked GO nanosheets and graphite layers [52].
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3.4. Atomic Force Microscope (AFM)

Krishnamoorthy et al. (2013) revealed the morphology of GO sample S-6 using AFM,
depicting sheet-like structures with distinguishable single- and few-layered GO. (Figure 5).
Clustering and self-assembly during drying caused multiple layers. Monolayers exhibited
folds and high transparency, while wrinkles were observed in both monolayer and few-
layered GO [38]. In tapping mode to image spray-coated materials on mica. Graphene
oxide exhibited a layered morphology with a thickness of approximately 25 nm, containing
embedded iron oxide particles of different sizes in samples S1 (70 nm) and S5 (200 nm)
(Figure 6a–c) [53]. Treating a silicon substrate with drops of GO and rGO allowed them to
dry for 30 min. The result was separate GO sheets (1.2 nm) and wrinkled, aggregated rGO
sheets (1.05 nm), possibly due to exfoliation variations [54].
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4. Mechanical Analysis

Babak, Fakhim, et al. (2014) analyzed the impact of varying amounts of graphene
oxide (GO) on the tensile strength of cement mortar. The tensile strength increased with
GO content to 1.5%, resulting in a 48% improvement compared to the control samples.
However, beyond 1.5%, the tensile strength decreased [55]. The Young’s modulus was
determined by ultrasound, and hardness and fracture toughness were assessed with a
Vickers Hardness Tester (98.1 N force, seven indentations). The result showed that there
was a decrease in Young’s modulus with increasing GO content correlated with relative
densities. Due to the extreme sensitivity of the elastic modulus to porosity, pore shape, and
agglomerates, even a slight reduction in relative density could result in a substantial drop
in the elastic modulus [56].

Chen et al. (2012) investigated the tensile properties of GO and pure ultrahigh molecu-
lar weight polyethylene (UHMWPE) composites, which revealed that adding GO sheets
increased the yield strength but decreased the ultimate tensile strength and elongation
(Table 1) [57]. They found the optimal GO content to be 0.5 wt.%, while higher content led
to decreased ductility and potential damage to UHMWPE chains. Strong GO-UHMWPE
contact increased the yield strength, while a layered structure facilitated load transfer
and energy absorption in composites with 0.5 wt.% GO. GO3 and GO4 in chitosan films
enhanced tensile strength and Young’s modulus, with maintained strength in wet condi-
tions. Promising biomaterials [58]. GO/rGO enhances geopolymer flexural strength with
increased dosage but decreases with excessive addition, negatively impacting mechanical
strength [59].
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Table 1. Mechanical characteristics of GO/UHMWPE composites with various GO contents.

Sample Description Yield Strength (MPa) Ultimate Tensile Strength (MPa) Elongation at Break (%)

1% GO added in UHMWPE 23.38 ± 1.06 26.55 ± 0.80 1.53 ± 0.48
0.5% GO added in UHMWPE 23.70 ± 1.16 30.61 ± 1.72 2.76 ± 0.53
0.3% GO added in UHMWPE 23.42 ± 1.08 24.15 ± 1.56 1.20 ± 0.24
0.1% GO added in UHMWPE 23.03 ± 0.46 22.82 ± 0.76 0.88 ± 0.32

Pure UHMWPE 22.88 ± 0.77 30.45 ± 1.27 22.71 ± 0.47

5. Conclusions

Due to its exceptional qualities, graphene has received much attention in the field of
material research. This review aimed to describe the various manufacturing processes and
characteristics of GO and rGO. The exceptional qualities of graphene, its unique structure,
and the simplicity with which GO and rGO can be functionalized all contribute to the
amazing performances of these composites. There are still many problems to be solved
before graphene can be used in practical applications though. For instance, producing
graphene on a large scale with high quality and a homogeneous structure is still very
difficult. Developing more eco-friendly and dependable technologies will make graphene-
based systems and devices indispensable in our daily lives.
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