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Abstract: In many fields, data-driven decision making has become essential due to machine learning
(ML), which provides insights that improve productivity and quality of life. A basic machine learning
approach called clustering helps find comparable data points. Clustering plays a critical role in the
identification of patient subgroups and the customisation of treatment in the context of tuberculosis
(TB) research. While prior studies have recognized its utility, a comprehensive comparative analysis
of multiple clustering methods applied to TB data is lacking. Using TB data, this study thoroughly
assesses and contrasts four well-known machine learning clustering algorithms: spectral clustering,
DBSCAN, hierarchical clustering, and k-means. To evaluate the quality of a cluster, quantitative
measures such as the silhouette score, Davies–Bouldin index, and Calinski–Harabasz index are
utilised. The results provide quantitative insights that enhance comprehension of clustering and
guide future research.

Keywords: machine learning; clustering; tuberculosis; data analysis

1. Introduction

In many fields, machine learning (ML) has become a disruptive force that is reshaping
industries and having a significant impact on people’s lives [1]. Its capacity to glean
valuable insights from data has sparked ground-breaking developments in a variety of
industries, including banking, healthcare, and transportation. Machine learning (ML)
algorithms have become essential tools for data-driven decision making, ranging from
recommendation systems and self-driving cars to personalised medical treatments. They
enable us to use data to our advantage and generate well-informed predictions that enhance
productivity and quality of life [1,2]. Clustering is a basic machine learning technique that
involves assembling related data points according to shared features [3]. In scientific study,
clustering is essential, especially when it comes to disease analysis. It helps researchers
comprehend complicated illnesses, pinpoint patient subgroups, and customise care for
improved results [4]. Researchers have found hidden patterns in patient data by using
clustering to explore a variety of medical disorders [3].

Clustering approaches have proven beneficial in the setting of tuberculosis (TB), a
severe infectious disease that continues to offer considerable global public health issues [5].
A wide range of factors, such as clinical, demographic, and genetic data, are frequently
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present in tuberculosis data. Manually analysing such data is laborious and error-prone, but
machine learning clustering techniques can effectively reveal insights that may be missed
by human analysis [6]. By assisting in the identification of unique patient cohorts, clustering
enables doctors to make better-informed judgements on interventions and therapies.

Previous research has acknowledged the value of clustering in tuberculosis (TB)
studies [6], with some using machine learning (ML) techniques to examine TB patient
data. A thorough comparison review of different clustering algorithms is conspicuously
absent in the literature, despite the fact that some studies [7,8] have produced insightful
results. Thus, by methodically assessing and contrasting the effectiveness of various ML
clustering methods when applied to TB data, this research seeks to close this gap. In
order to address this gap, this study compares the effectiveness of four popular clustering
techniques: spectral clustering, DBSCAN, hierarchical clustering, and k-means clustering.
To objectively evaluate the quality of the clusters generated by each approach, measures
for cluster evaluation were used, such as silhouette score, Davies–Bouldin index, and
Calinski–Harabasz index.

The selection of tuberculosis data as the primary subject of this study is highly signif-
icant. With millions of new cases reported each year, tuberculosis (TB) continues to be a
global health concern [6]. In actuality, there were about 10 million new cases of tuberculosis
globally in 2019 alone [9]. Using clustering approaches to understand the variability of the
disease could greatly improve patient management, yield epidemiological insights, and
make it easier to devise focused interventions.

This work initiates a thorough exploration of ML clustering techniques applied to TB
data. Important insights are intended to be generated by contrasting different clustering
methods and using strict assessment metrics. These findings can then guide future re-
search initiatives and improve our understanding of tuberculosis. This study advances the
overarching objective of using machine learning to fight infectious illnesses and enhance
public health.

2. Methods
2.1. Data Preprocessing

A thorough preprocessing step was performed on the TB dataset [9] to guarantee the
consistency and dependability of our study. This includes managing outliers, resolving
missing numbers, and using normalisation to standardise the data [2]. All variables were
brought to a common scale using data normalisation, avoiding larger-magnitude variables
from unduly influencing the clustering process. To guarantee that every feature contributes
equally to the clustering results, standardising the features is an essential first step.

The TB dataset, comprising a diverse set of variables related to patient demographics,
clinical information, and outcomes, was categorized into four distinct groups to facilitate a
more focused analysis:

• Estimation Data: This category includes variables related to the estimation and predic-
tion of TB cases, such as mortality rates and historical case counts.

• Notification Data: Notification data encompass information related to the formal
reporting of TB cases to health authorities, including notification rates, geographical
locations, and notification-related features.

• Budget Data: Budget data comprises information on financial allocations, expenditures,
and resource utilization for TB control and treatment programs.

• Outcome Data: This category encompasses variables associated with TB treatment
outcomes, including treatment success rates, patient recovery status.

Principal Component Analysis (PCA) was applied separately to each set of data in
order to minimise the dimensionality of the data while keeping the most useful variables
from each category. Principal components, or linear combinations of variables, are identified
by PCA, a dimensionality reduction technique, as they capture the largest variation in the
data [9]. Our goal was to minimise computational complexity and any noise caused by less
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relevant variables, while maintaining the essential information needed for clustering, by
choosing a subset of the most significant principal components [10,11].

For each category (Estimation, Notification, Budget, and Outcome), the top principal
components that collectively explained a predetermined percentage of the total variance
(e.g., 95) were retained for subsequent clustering analysis. This feature selection approach
allowed the distillation of the essential information from the original data while discarding
redundant or less informative variables.

2.2. K-Means

One often utilised clustering method, known as K-means clustering, involves the
division of data points into K distinct groups based on their degree of similarity. The
objective is to reduce the variance, or sum of squared distances, between each data point
and the cluster centroids [8]. Given a dataset X with n data points x1, x2, . . . , xn and
an integer k representing the desired number of clusters, the objective is to find k cluster
centroids µ1 , µ2, . . . , µk that minimize the following objective function:

J(c, µ) = ∑n
i=1 ∑k

j=1

∥∥xi − µj
∥∥2, (1)

where c is a vector of length n containing the cluster assignments for each data point,
indicating which cluster each data point belongs to; µ represents the centroid of cluster j; and∥∥xi − µj

∥∥2 denotes the squared Euclidean distance between data point xi and centroid µj.
The K-means approach iteratively minimises the objective function by assigning data

points to the centroid that is closest to them and updating the centroids based on the average
of the data points within each cluster [12]. The process is continued until convergence,
typically defined as the point at which there are no substantial changes in either the cluster
assignments or the centroids.

The process is effective in the subsequent stages:

• The process of initialising k cluster centroids can be performed in two ways: randomly
or by selecting data points as initial centroids.

• The process involves assigning each individual data point to the centroid that is closest
to it, so creating k clusters.

• The centroids can be recalculated by computing the mean of all data points within
each cluster.

Continue to iterate through steps 2 and 3 until convergence is achieved, which is often
indicated by the absence of substantial alterations in the cluster assignments or centroids.

2.3. Hierarchical Clustering

Hierarchical clustering, a technique known as either agglomerative or divisive, is
utilized to construct a hierarchical structure of clusters by iteratively merging or splitting
data points based on their degree of similarity [7]. The algorithm produces a hierarchical
data structure that can be visually represented as a dendrogram. It is not necessary to
predetermine the number of clusters when using hierarchical clustering.

Given a dataset X with n data points x1, x2, . . . , xn, the agglomerative hierarchical
clustering algorithm starts with each data point as its own cluster. The nearest clusters are
then repeatedly combined to create larger clusters. The linkage criterion, which specifies
the distance between clusters to decide which clusters to merge, is the essential component
of this strategy. Typical linking techniques consist of the following:

• Single Linkage: Distance between the closest data points in two clusters.
• Complete Linkage: Distance between the farthest data points in two clusters.
• Average Linkage: Average distance between all data point pairs in two clusters.
• Ward’s Linkage: Minimizes the increase in total within-cluster variance when merg-

ing clusters.
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It produces a cluster hierarchy, which is frequently depicted as a dendrogram. The
way the algorithm works is as per the Agglomerative Approach:

1. To initiate the clustering process, each individual data point is initially assigned as a
separate cluster;

2. The clusters are merged iteratively by considering the nearest clusters according to
the selected linkage criterion;

3. The merging process should be continued until either all data points are assigned to a
single cluster or a predetermined ending criterion is satisfied.

A hierarchical structure of clusters is provided by hierarchical clustering, enabling
flexible interpretation and investigation of various clustering granularities. Dendrograms
can be used to visualize it, and the number of clusters need not be specified beforehand.
However, for large datasets, hierarchical clustering can be computationally demanding, and
the distance measure and linkage method selected can have a big impact on the outcome [7].

2.4. DBSCAN

A density-based clustering algorithm called DBSCAN, or Density-Based Spatial Clus-
tering of Applications with Noise [13], finds clusters based on the density of data points
nearby. Additionally, it finds noise points, or outliers, that are not associated with any
cluster. The algorithm has the following mathematical definition:

For a dataset X with n data points x1, x2, . . . , xn and two parameters:

• ε (epsilon): A radius that defines the neighbourhood around each data point;
• MinPts: The minimum number of data points required to form a dense region (includ-

ing the data point itself).
DBSCAN categorizes data points into three main types:

• Core Point: A data point with at least MinPts data points within its ε-neighborhood;
• Border Point: A data point within the ε-neighbourhood of a Core Point but with fewer

than MinPts data points within its own ε-neighborhood;
• Noise Point: The concept of a “Noise Point” refers to a specific data point inside a

dataset that does not meet the criteria of being classified as either a “Core Point” or a
“Border Point”.

The DBSCAN algorithm proceeds as follows:

1. Randomly select an unvisited data point.
2. If the selected point is a Core Point, create a new cluster and add it to the cluster.
3. Expand the cluster by adding all reachable, unvisited Core Points and Border Points

to the cluster.
4. Repeat steps 1–3 until no more data points can be added to the cluster.
5. If there are unvisited data points, return to step 1 and start a new cluster.

Large datasets can benefit from DBSCAN because of its computational complexity,
which is linear in the amount of data points. It works especially well with datasets that
have different cluster densities and cluster shapes [13].

2.5. Spectral Clustering

Using the spectrum characteristics of the data’s similarity matrix, the graph-based
clustering algorithm known as “spectral clustering” locates clusters. It works very well for
finding complex-shaped and non-convex clusters. One of the most important parameters
in spectral clustering is the number of clusters (k), which can be chosen using methods
such as eigenvalue analysis or visual evaluation of the eigenvectors [14].

It operates as follows:

• The construction of a similarity graph captures the relationships between data points,
where edges represent similarities;

• The graph Laplacian, whether unnormalized or normalized, transforms the graph into
a format suitable for spectral analysis;
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• Eigenvalue decomposition extracts the eigenvectors and eigenvalues of the Lapla-
cian matrix;

• Spectral embedding reduces the dimensionality of the data while preserving cluster
structures in lower-dimensional space;

• Clustering is performed on the embedded data using a chosen algorithm, typically
K-means.

The creation of the Laplacian matrix and the eigenvalue decomposition that follows
provides the central mathematical ideas of spectral clustering. Here is how these are depicted:

Given the similarity matrix S, the unnormalized Laplacian matrix L is computed as:

L = D − S, (2)

where D is the degree matrix, defined as a diagonal matrix with the sum of similarities for
each data point on the diagonal.

Alternatively, the normalized Laplacian matrix Lnorm is defined as:

Lnorm = I − D− 1
2 SD− 1

2 , (3)

where I is the identity matrix.
Eigenvalue decomposition of the Laplacian matrix yields a set of eigenvalues λ1, λ2, . . . ,

λn and corresponding eigenvectors v1, v2, . . . , vn.
To create the matrix X_“embed” for spectral embedding, the top k eigenvectors that

match the fewest eigenvalues are chosen [14].

2.6. Silhouette Score

A metric called the silhouette score is employed to assess how well a clustering
algorithm produces clusters. In comparison to the closest neighbouring cluster, it gauges
how similar each data point inside a cluster is to the other data points within that cluster.
Higher values of the silhouette score, which goes from −1 to 1, indicate better-defined and
well-separated clusters [15].

Let b(i) be the least average distance from data point i to all data points in a different
cluster, defined as the cluster to which i does not belong, and let a(i) be the average distance
from data point i to all other data points in the same cluster, given a dataset X with n data
points. Next, we compute the silhouette score for data point i as follows:

S(i) =
b(i)− a(i)

max(a(i), b(i))
. (4)

The silhouette score for the entire dataset is the mean silhouette score across all
data points:

silhouett escore =
1
n∑n

i=1 S(i). (5)

A silhouette score approaching 1 signifies that a data point is highly aligned with its
own cluster and exhibits low alignment with neighbouring clusters, hence indicating a
favourable outcome in terms of clustering.

A score in close proximity to zero suggests that the data point is located precisely on
or in very close proximity to the decision boundary that separates two adjacent clusters.

A score that is close to −1 suggests the possibility that the data point might have been
erroneously assigned to a different cluster [16].

2.7. Davies–Bouldin Index

A metric called the Davies–Bouldin Index is used to evaluate how well a clustering
algorithm produces clusters. It accounts for the size of each cluster and calculates the
average similarity between it and its most similar cluster. More distinct and well-defined
clusters are indicated by a lower Davies–Bouldin Index [17].
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Given a dataset X with n data points and k clusters C1, C2, . . . , Ck the Davies–Bouldin
Index is calculated as follows:

1. For each cluster Ci, calculate its centroid µi representing the centre of the cluster;
2. For each cluster Ci, calculate the average distance between each data point in Ci and

the centroid µi denoted as Ri:

Ri =
1

|Ci|∑x∈Ci
d(x, µi), (6)

where |Ci| represents the number of data points in cluster Ci, and d(x, µi) is the distance
between data point x and centroid µi (e.g., Euclidean distance);

3. For each cluster Ci, calculate the pairwise dissimilarity between cluster Ci and all
other clusters Cj (where j ̸= i) as:

D
(
Ci, Cj

)
=

Ri + Rj

d
(
µi, µj

) ; (7)

4. For each cluster Ci, find the cluster Cj with which it has the highest similarity, i.e., the
minimum D

(
Ci, Cj

)
;

5. The Davies–Bouldin Index is then calculated as the average of these maximum simi-
larities across all clusters:

Davies–Bouldin Index =
1
k

k

∑
i=1

max
j ̸=i

D
(
Ci, Cj

)
. (8)

Better clustering is shown by a lower Davies–Bouldin Index, which denotes more
distinct and well-separated clusters.

Since there is no upper bound for the Davies–Bouldin Index, its meaning must be
considered in relation to other clustering outcomes. A lower number is invariably prefer-
able [12,18,19].

2.8. Calinski–Harabasz Index

A statistic used to assess the quality of clusters generated by a clustering algorithm
is the Calinski–Harabasz Index, sometimes referred to as the Variance Ratio Criterion.
By comparing the within-cluster variance to the between-cluster variance, it evaluates
the degree of separation between clusters. Better-defined and well-separated clusters are
indicated by a higher Calinski–Harabasz Index [20].

Given a dataset X with n data points and k clusters C1, C2, . . . , Ck, the Calinski–
Harabasz Index is calculated as follows:

1. Calculate the overall mean of the data points, denoted as µtotal:

µtotal =
1
n ∑

x∈X
x; (9)

2. Calculate the within-cluster variance (W) as the sum of the variances of each cluster:

W = ∑k
i=1 ∑x∈Ci

∥x − µi∥2, (10)

where µi is the centroid of cluster Ci.

3. Calculate the between-cluster variance (B) as the sum of variances between the cluster
centroids and the overall mean:

B = ∑k
i=1 |Ci| · ∥µi − µtotal∥2, (11)
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4. Compute the Calinski–Harabasz Index as the ratio of the between-cluster variance (B)
to the within-cluster variance (W):

Calinski–Harabasz index =
B/[K − 1]

W/[n − K]
. (12)

Better clustering outcomes are indicated by a higher Calinski–Harabasz Index, which
denotes clearly separated clusters and a between-cluster variation that is substantially
greater than the within-cluster variance.

The interpretation of the index is based on prior clustering results and has no upper
bound. In general, a larger value is preferable [20–22].

3. Results

The clustering results for the estimate, notification, budget, and outcome data types
are shown in this section. In terms of silhouette scores, Davies–Bouldin scores, and
Calinski–Harabasz scores, it seems that K-means with k = 4 and hierarchical clustering
with k = 4 do reasonably well. The graphical depiction of experiment scores on estimates
data category for various values of k and ε is presented in Figures 1–4. The output of the
estimates data category of the TB dataset, which was processed by ML clustering methods,
is shown in Figure 5. From the results acquired through the analysis of cluster evaluation
metrics, the best value of k for K-means, hierarchical and spectral clustering, and ε for
DBSCAN, was selected. Four clusters are produced by K-means and hierarchical clustering,
whereas five clusters are produced by the using the template.
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Table 1 shows scores for the notification data category of the TB dataset. K-means and
hierarchical clustering seem to perform consistently well across different values of k for
this data category. Both methods produce clusters with high silhouette scores, indicating
well-defined and well-separated clusters. K-means with k = 10 and hierarchical clustering
with k = 10 appear to be suitable choices. DBSCAN performs reasonably well, with a stable
silhouette score across different epsilon values, indicating relatively well-separated clusters.
However, it may not be as effective as K-means or hierarchical clustering in this scenario.
Spectral clustering shows good performance when k = 3, but its silhouette score decreases
as the number of clusters increases. This suggests that it might be challenging to identify
more than three well-separated clusters in the “Notification” data category using spectral
clustering. Figure 6 illustrates clustering methods with their best “k” and “ε” values for
this data category.
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KMeans (k = 9) 0.823738 0.537225 1981.053036 

KMeans (k = 10) 0.849126 0.356672 2011.028563 
Hierarchical (k = 2) 0.942705 0.289393 625.038025 
Hierarchical (k = 3) 0.905911 0.402616 720.649708 
Hierarchical (k = 4) 0.906682 0.359964 769.083541 
Hierarchical (k = 5) 0.864937 0.636404 902.603930 
Hierarchical (k = 6) 0.883104 0.409142 1117.594503 
Hierarchical (k = 7) 0.882580 0.364382 1692.680790 
Hierarchical (k = 8) 0.879857 0.456697 1782.923876 
Hierarchical (k = 9) 0.813840 0.508241 1974.335965 

Hierarchical (k = 10) 0.810734 0.414324 2284.732735 
DBSCAN (ε = 0.01) 0.786429 1.070687 109.283498 
DBSCAN (ε = 0.02) 0.809581 1.026351 126.473773 
DBSCAN (ε = 0.03) 0.830719 0.982316 146.991170 
DBSCAN (ε = 0.04) 0.815291 1.142252 104.125035 
DBSCAN (ε = 0.05) 0.897377 0.788539 289.932073 
DBSCAN (ε = 0.06) 0.906467 0.734014 337.825357 
DBSCAN (ε = 0.07) 0.914212 0.679914 392.062907 
DBSCAN (ε = 0.08) 0.920791 0.624156 452.104032 
DBSCAN (ε = 0.09) 0.920791 0.624156 452.104032 
DBSCAN (ε = 0.10) 0.920791 0.624156 452.104032 

Figure 6. Cluster visualization with best results (Notification dataset).
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Table 1. Notifications data category results.

Method Silhouette Score Davies–Bouldin Score Calinski–Harabasz Score

KMeans (k = 2) 0.921888 0.896547 233.083908
KMeans (k = 3) 0.942814 0.460119 564.180086
KMeans (k = 4) 0.936618 0.372054 482.829735
KMeans (k = 5) 0.937319 0.265713 700.255366
KMeans (k = 6) 0.930778 0.360036 825.631145
KMeans (k = 7) 0.885819 0.387040 1084.524869
KMeans (k = 8) 0.883502 0.346847 1548.910942
KMeans (k = 9) 0.883538 0.304381 1781.357804

KMeans (k = 10) 0.882582 0.213537 1962.860713
Hierarchical (k = 2) 0.924705 0.901919 230.272882
Hierarchical (k = 3) 0.942814 0.460119 564.180086
Hierarchical (k = 4) 0.941624 0.318242 627.803845
Hierarchical (k = 5) 0.937319 0.265713 700.255366
Hierarchical (k = 6) 0.895864 0.407496 1021.746228
Hierarchical (k = 7) 0.895045 0.415851 1312.444535
Hierarchical (k = 8) 0.886553 0.390947 1669.164844
Hierarchical (k = 9) 0.809496 0.488679 1827.003481
Hierarchical (k = 10) 0.807232 0.436929 2133.874560
DBSCAN (ε = 0.01) 0.806189 1.244112 86.984049
DBSCAN (ε = 0.02) 0.854295 1.133252 120.141415
DBSCAN (ε = 0.03) 0.878016 1.058013 147.406641
DBSCAN (ε = 0.04) 0.885626 1.026981 159.757449
DBSCAN (ε = 0.05) 0.885626 1.026981 159.757449
DBSCAN (ε = 0.06) 0.911349 0.934416 209.653276
DBSCAN (ε = 0.07) 0.911349 0.934416 209.653276
DBSCAN (ε = 0.08) 0.916373 0.911491 222.581546
DBSCAN (ε = 0.09) 0.916373 0.911491 222.581546
DBSCAN (ε = 0.10) 0.916373 0.911491 222.581546
DBSCAN (ε = 0.11) 0.921888 0.896547 233.083908
DBSCAN (ε = 0.12) 0.921888 0.896547 233.083908
DBSCAN (ε = 0.13) 0.921888 0.896547 233.083908
DBSCAN (ε = 0.14) 0.924705 0.901919 230.272882
DBSCAN (ε = 0.15) 0.924705 0.901919 230.272882
DBSCAN (ε = 0.16) 0.924705 0.901919 230.272882

Spectral (k = 2) 0.927732 0.861168 228.212784
Spectral (k = 3) 0.940250 0.400739 485.133303
Spectral (k = 4) 0.854569 0.614904 436.856959
Spectral (k = 5) 0.809416 0.930598 365.402493
Spectral (k = 6) 0.533718 0.924874 291.017199
Spectral (k = 7) −0.061049 16.544091 254.267550
Spectral (k = 8) −0.230689 6.928392 197.336032
Spectral (k = 9) −0.297636 10.410599 171.848693

Spectral (k = 10) −0.233370 5.421388 149.588401

From results shown in Table 2 as in the previous analysis, the choice of the best
clustering method and parameter configuration should consider the specific goals of your
analysis and the context of the data. K-means and hierarchical clustering appear to be
strong candidates based on these evaluation scores for “Budget” data category. In Figure 7,
the most suitable cluster numbers for each method are illustrated.

Figures 8–12 illustrate that across all clustering methods, it appears that the “Outcome”
data category is challenging to cluster effectively. The silhouette scores decrease with
increasing cluster numbers for both K-means (Figure 8) and hierarchical clustering (Figure 9)
indicating that the data might not have clear natural clusters. DBSCAN also struggles to find
well-separated clusters, as indicated by its low silhouette scores and high Davies–Bouldin
scores across different epsilon values (Figure 10). The choice of epsilon significantly
impacts the results, but none of the configurations seem to produce strong clusters. Spectral
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clustering follows a similar trend, with decreasing silhouette scores as k increases. This
suggests that it is challenging to identify meaningful clusters in this data category using
spectral clustering (Figure 11). The “Outcome” data category might inherently lack clear
clusters, making it difficult to achieve strong clustering results. Due to this limitation,
minimum k and ε values were chosen, Figure 12 illustrates the clustering of the “Outcome”
data category.

Table 2. Budget data category results.

Method Silhouette Score Davies–Bouldin Score Calinski–Harabasz Score

KMeans (k = 2) 0.942705 0.289393 625.038025
KMeans (k = 3) 0.905911 0.402616 720.649708
KMeans (k = 4) 0.902634 0.315524 732.222635
KMeans (k = 5) 0.861461 0.391989 904.214898
KMeans (k = 6) 0.885724 0.413518 1143.276872
KMeans (k = 7) 0.881099 0.390891 1746.970170
KMeans (k = 8) 0.882095 0.267941 1786.333354
KMeans (k = 9) 0.823738 0.537225 1981.053036

KMeans (k = 10) 0.849126 0.356672 2011.028563
Hierarchical (k = 2) 0.942705 0.289393 625.038025
Hierarchical (k = 3) 0.905911 0.402616 720.649708
Hierarchical (k = 4) 0.906682 0.359964 769.083541
Hierarchical (k = 5) 0.864937 0.636404 902.603930
Hierarchical (k = 6) 0.883104 0.409142 1117.594503
Hierarchical (k = 7) 0.882580 0.364382 1692.680790
Hierarchical (k = 8) 0.879857 0.456697 1782.923876
Hierarchical (k = 9) 0.813840 0.508241 1974.335965
Hierarchical (k = 10) 0.810734 0.414324 2284.732735
DBSCAN (ε = 0.01) 0.786429 1.070687 109.283498
DBSCAN (ε = 0.02) 0.809581 1.026351 126.473773
DBSCAN (ε = 0.03) 0.830719 0.982316 146.991170
DBSCAN (ε = 0.04) 0.815291 1.142252 104.125035
DBSCAN (ε = 0.05) 0.897377 0.788539 289.932073
DBSCAN (ε = 0.06) 0.906467 0.734014 337.825357
DBSCAN (ε = 0.07) 0.914212 0.679914 392.062907
DBSCAN (ε = 0.08) 0.920791 0.624156 452.104032
DBSCAN (ε = 0.09) 0.920791 0.624156 452.104032
DBSCAN (ε = 0.10) 0.920791 0.624156 452.104032
DBSCAN (ε = 0.11) 0.920791 0.624156 452.104032
DBSCAN (ε = 0.12) 0.920791 0.624156 452.104032
DBSCAN (ε = 0.13) 0.924631 0.581839 493.927175
DBSCAN (ε = 0.14) 0.942705 0.289393 625.038025
DBSCAN (ε = 0.15) 0.942705 0.289393 625.038025
DBSCAN (ε = 0.16) 0.942705 0.289393 625.038025

Spectral (k = 2) 0.942705 0.289393 625.038025
Spectral (k = 3) 0.916820 0.533065 596.430729
Spectral (k = 4) 0.871292 0.573779 575.026763
Spectral (k = 5) 0.833139 0.661008 433.307591
Spectral (k = 6) 0.662441 0.648925 348.889444
Spectral (k = 7) 0.672314 0.584286 381.794204
Spectral (k = 8) 0.375670 0.631871 250.780582
Spectral (k = 9) 0.360341 0.615598 218.433071

Spectral (k = 10) 0.333171 0.678220 247.337298
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4. Conclusions

Four different clustering techniques—K-means, hierarchical clustering, DBSCAN, and
spectral clustering—were assessed in this extensive clustering analysis across four different
data categories (Estimate, Notification, Budget, and Outcome) from the World Health
Organization’s TB data collection. Three evaluation criteria were used to evaluate each
method’s performance: the silhouette score, the Davies–Bouldin score, and the Calinski–
Harabasz score.

An increase in the number of clusters (k) was found to frequently lead to a decrease in
silhouette scores across all data categories and clustering techniques. This finding revealed
that the identification of relevant and well-separated groups grew increasingly difficult
when the data was divided into more clusters.

The neighbourhood radius, ε, was discovered to have a significant impact on DB-
SCAN’s performance. In terms of silhouette scores, smaller ε values typically yielded
better results, indicating denser, more distinct clusters. Nevertheless, DBSCAN had trouble
producing robust clusters for the majority of the epsilon values it looked at.

The “Outcome” data category consistently produced higher Davies–Bouldin scores
and lower silhouette scores when compared to other data categories across all clustering
algorithms. This recurring pattern implied that there might not be any distinct natural
groups in the “Outcome” data by nature.

The features of the dataset and the particular goals of the analysis will determine
which clustering approach is used and how the results are evaluated. Subsequent studies
ought to concentrate on customising clustering strategies to the distinct difficulties posed
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by various data kinds and on investigating novel methods to reveal significant patterns in
the data.
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