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Abstract: The objective of this study is to improve the performance of a diesel engine with direct
injection using diethyl ether as an additive and pongamia methyl ester as a fuel and to minimize
emissions. The optimization process considers two input factors, the load and the fuel, and evaluates
nine response parameters, including brake-specific fuel consumption, brake thermal efficiency, carbon
monoxide, oxygen, nitrogen oxides, smoke, and exhaust gas temperature. A series of investigations
were carried out to determine the appropriate reaction. Based on the test results, a grey relational
analysis was performed to determine the optimal combination of fuel and load. The analysis involved
the application of grey relational grade in order to simplify the problem of multiple responses to a
single response. The integration of the grey relational grade and the signal-to-noise ratio provides
the performance index. The experiment showed that the most effective solution is obtained by using
Pongamia methyl ester fuel with a 10% addition of diethyl ether at a load of 30 kg.

Keywords: diesel; pongamia methyl ester; diethyl ether; grey relational analysis

1. Introduction

Despite the scarcity of resources, petroleum-derived fuels are still readily available.
Some areas of the country are extremely active in terms of these few sources. Consequently,
countries that do not have these resources face energy and international trade challenges
due to their heavy dependence on oil imports [1,2]. The exploration of alternative fuel
sources that are readily available in the region, such as biodiesel, vegetable oil, alcohol,
and others, is of utmost importance [3,4]. Exhaust, fuel, and engine modifications are
the most important methods to optimize performance and reduce emissions due to their
environmental and economic benefits [5,6].

The investigation of methyl and ethyl esters from animal and vegetable fats as fuel
for diesel engines has been the subject of numerous scientific studies. On the other hand,
a few scientists directed their attention toward investigating the impact of vegetable oils
and their esters on the performance of engines [7,8]. Other studies were primarily con-
cerned with determining the emission characteristics of the engine [9,10]. A comprehensive
analysis of the tests conducted revealed that biodiesel showed favorable results in both
engine performance and emissions. Therefore, biodiesel could potentially considered a
viable and environmentally sustainable alternative to conventional diesel [11–13]. Reitz
et al. [14] have shown that dual-fuel combustion in diesel engines is an effective method
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of utilizing alternative fuels. Aransiala et al. [15] have evaluated various modern tech-
niques for biodiesel synthesis and proposed a transesterification strategy using animal
fats or vegetable oil as a catalyst. Pali et al. [16] investigated the use of sal-methyl ester
mixtures in a single-cylinder diesel engine. The objective of their study was to evaluate the
influence of various mixtures on emission characteristics, performance, and combustion.
The experimental findings indicate that a diesel engine can operate on a fuel combination
consisting of sal-methyl ester and diesel with a volume proportion of 40% without the
need for modifications. Using Mangifera indicia biodiesel fuel blends, Jadhav et al. [17]
enhanced the performance of a compression ignition engine by applying grey relation
analysis and the Taguchi technique. Both partial-load and full-load conditions were used to
optimize the experiment. In contrast to alternative configurations, the trial results showed
that the use of Mangifera indica biodiesel blends led to an improvement under part-load
and full-load conditions. To determine the optimum conditions, Yadav et al. [18] applied
the Taguchi approach to analyze the gray relation and used the Kano model to determine a
correlation between public expectations and performance requirements. Thirteen shape
factors were tested, each with three levels, along with five aesthetic qualities. In order
to enhance the efficiency of fuel use and reduce the pollutants released from the exhaust,
Venkatanarayana et al. [19] adopted the Taguchi approach to investigate the optimal input
parameters, including load, fuel blend proportion, compression ratio, injection pressure,
and injection timing. The experimental results show that brake-specific fuel consumption is
most affected by compression ratio, carbon monoxide (CO) emissions are most affected by
load, and smoke opacity is most affected by injection timing. Muqeem et al. [20] improved
the control parameters of diesel engines, including injection timing, compression ratio,
exhaust gas temperature, Hydro carbon (HC) emissions, and air density, in relation to
smoke opacity by applying the Taguchi technique. Determining the optimal values for the
performance characteristics requires the use of the signal to noise (S/N) ratio and ANOVA.

The main objective of this study is to optimize the operating parameters of a Direct
Injection (DI) diesel engine by using Pongamia biodiesel blends as a replacement fuel. Two
important input factors of the engine are the subject of the study: the load and the blend
ratio of the fuel. These factors are considered to optimize critical engine responses such
as Brake thermal efficiency (BTE), Brake specific fuel consumption (BSFC), Exhaust gas
temperture (EGT), hydrocarbon emissions (HC), CO2, O2, carbon monoxide (CO), nitrogen
oxide emissions (NOx), and smoke.

2. Materials and Methods
Experimental Setup

On a DI diesel engine with one cylinder, four strokes, and 3.73 kW, the performance and
emission characteristics of biodiesel derived from Pongamia methyl ester (PME) combined
with diethyl ether (DEE) were assessed. Table 1 displays the parameters of the test engine.

Table 1. Specifications of direct-injection diesel engine.

Engine Model AV1, kirloskar make

Rated Horse power: 5 hp (3.73 kW)
Rated Speed: 1500 rpm
No of Strokes: 4

Mode of Injection and injection pressure Direct Injection, 200 kg/cm2

No of Cylinders: 1
Stroke 110 mm
Bore 80 mm

Compression ratio 16.5

Figure 1 displays the configuration of the experimental setup. The experiments were
conducted with an unmodified DI diesel engine. Diesel fuel with additives of 5%, 10%, and
15% was used to operate the engine, along with pure PME and PME-DEE blends. For each
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fuel type, the experiments were conducted with different loads, ranging from no load to
40 kg. The engine was kept at its intended speed of 1500 rpm during all tests. Performance,
exhaust emissions, and smoke density were determined using an exhaust gas analyzer and
a smoke meter. A volumetric measurement of fuel consumption was required to determine
the brake-specific fuel consumption and brake thermal efficiency.
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Figure 1. Illustrates the test setup.

Exhaust gas temperatures were also measured under all conditions, and the resulting
data can be used to assess engine performance and emission parameters. The performance
and emission parameters analyzed in this study include BTE, BSFC, EGT, HC, CO, CO2,
O2, and NOX.

3. Methodology
3.1. Taguchi Analysis

This approach uses a rigorous experimental design to minimize process variation.
Its main objective is to ensure product quality while minimizing production costs. The
orthogonal arrays designed by Taguchi contain extremely large subcomponents. By using
these experimental designs, it is possible to approximate significant effects with a limited
number of repetitions. The number of degrees of freedom plays a crucial role in the
selection of an orthogonal array [21]. We could implement designs that omit all conceivable
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combinations of the factors to save time and resources. Factorial methods are used in the
development of fractional factorial designs, where some of the possible combinations are
omitted. These are crucial to the factor screening process as they limit the number of trials
to an acceptable level.

T = [(M − 1) ∗ N] + 1 (1)

where (N) Determine the number of factors, the minimum number of trials (T), and the
number of levels (M).

Five different conditions are considered in this analysis: Diesel, PME, PME + 5% DEE,
PME + 10% DEE, and PME + 15% DEE. Load and fuel are the two components that make
up the analysis.

Therefore, the L9 orthogonal array is chosen as it can accommodate at least nine experi-
ments. Orthogonal arrays with two factors represent the simplest conceivable arrangement.
Therefore, the square of the number of levels determines the minimal number of tests
that must be conducted. The required number of experiments is therefore 25. Therefore
orthogonal array L25 was used. By employing an analysis of variance (ANOVA), the
influence of specific process variables on response components was investigated.

To mitigate the challenges associated with conducting trials and tests under vary-
ing load conditions for different fuel blends, it is imperative to streamline this matter
from multiple responses into a solitary response objective. To accomplish this, Grey Re-
lational Analysis (GRA) is implemented. Figure 2 shows the methodology used in grey
relational analysis.
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Figure 2. Schematic diagram of gray relational analysis.

The calculation of the grey relation coefficient begins with the investigation of all
response parameters, including emission and performance, under various load conditions.
This is followed by a weighted conversion of the coefficients into Grey Relational Grade
(GRG) values for each load value. The Taguchi analysis system then uses these GRG
values as response parameters to generate signal-to-noise (S/N) plots for the given design
parameters. S/N plots play a critical role in quantifying the impact that changes in design
factor values have on the selected response variables. In creating these charts, a ‘lower is
better’ approach is used to identify responses that need to be reduced, and a ‘higher is
better’ approach is used to identify response variables that need to be improved. Using
this approach, it is possible to create S/N diagrams for a variety of selected design features
so that we can better understand how these influence the response variables [22,23].

Normalize the original sequence as follows if it contains a “higher-than-better” feature:

y*
i t =

yit − minyit
maxyit − minyit

(2)
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Normalize the original sequence as follows if it contains a “lower-than-better” feature:

y*
i t =

maxyit − yit
maxyit − minyit

(3)

y*
i t denotes the value reached after generating the grey relations. max yit denotes the

highest value of yit for the tth response, while min yit denotes the lowest value of yit for
the tth response.

3.2. Estimates of Quality Loss

In this estimate of quality loss, the experimental data are scaled from zero to one. y*
ot

represents the deviation sequence of the reference sequence ∆oit. The equation for ∆oit and
the comparison sequence yit is:

∆oit =
∣∣∣y*

ot − y*
i t
∣∣∣ (4)

where y*
ot indicates an ideal sequence for the responses. The grey relation level measures

the degree of connection between the test series y*
ot and y*

i t, where i is a number between 1
and n it is indicated by ∆. Table 2 shows the results of the estimation of the quality loss.

Table 2. Results of quality loss estimate.

Experiment
No Fuel Blend Load

(kg) (egt)∆oi (bsfc)∆oi (bth)∆oi (hc)∆oi (co)∆oi (co2)∆oi (o2)∆oi (nox)∆oi (smoke)
∆oi

1 D 0 0.054878 0 1 0.051724 0.9 0.084337 0.872727 0.037418 0
2 PME 0 0.04878 0 1 0.12069 1 0.072289 0.036364 0.031805 0.333333
3 PME+5%DEE 0 0.042683 0 1 0.060345 0.6 0.012048 0.872727 0.027128 0.428571
4 PME+10%DEE 0 0.02439 0 1 0.077586 0.4 0 0.6 0.01029 0.142857
5 PME+15%DEE 0 0 0 1 0.258621 0.4 0.012048 0.909091 0 0.238095
6 D 10 0.140244 0.801847 0.483652 0.189655 0.8 0.204819 0.963636 0.12348 0.142857
7 PME 10 0.134146 0.881425 0.433093 0.137931 1 0.156627 0 0.080449 0.380952
8 PME+5%DEE 10 0.146341 0.931664 0.471138 0 0.2 0.180723 0.854545 0.09261 0.52381
9 PME+10%DEE 10 0.140244 0.958158 0.449482 0.25 0.3 0.156627 0.872727 0.079514 0.428571
10 PME+15%DEE 10 0.115854 0.999938 0.504883 0.327586 0.2 0.180723 0.854545 0.064546 0.285714
11 D 20 0.317073 0.559358 0.258898 0.284483 0.6 0.433735 0.054545 0.4116 0.238095
12 PME 20 0.335366 0.609671 0.197414 0.198276 0.9 0.385542 0.090909 0.289055 0.47619
13 PME+5%DEE 20 0.341463 0.617779 0.184161 0.043103 0.2 0.361446 0.890909 0.282507 0.47619
14 PME+10%DEE 20 0.329268 0.621688 0.189036 0.362069 0.2 0.373494 0.6 0.302152 0.285714
15 PME+15%DEE 20 0.341463 0.628514 0.201904 0.456897 0.2 0.39759 0.927273 0.305893 0.142857
16 D 30 0.676829 0.502384 0.135801 0.327586 0.5 0.674699 0.109091 0.719364 0.47619
17 PME 30 0.554878 0.535399 0.076308 0.258621 0.6 0.650602 0.145455 0.669785 0.238095
18 PME+5%DEE 30 0.554878 0.537426 0.080593 0.12931 0.1 0.638554 0.927273 0.697848 0.666667
19 PME+10%DEE 30 0.560976 0.530476 0.076198 0.474138 0.1 0.650602 0 0.724041 0.619048
20 PME+15%DEE 30 0.609756 0.537851 0.066151 0.551724 0.2 0.674699 0.981818 0.633302 0.238095
21 D 40 1 0.431803 0.04628 0.637931 0.9 1 0.018182 0.919551 0.952381
22 PME 40 0.853659 0.491965 0.003497 0.715517 0.8 0.951807 0.054545 0.951356 1
23 PME+5%DEE 40 0.993902 0.52121 0.042473 0.508621 0.2 0.963855 0.927273 1 0.904762
24 PME+10%DEE 40 0.926829 0.508759 0.000185 0.922414 0.2 0.939759 0.072727 0.988775 0.857143
25 PME+15%DEE 40 0.902439 0.529429 0.063518 1 0 0.975904 1 0.967259 0.47619

3.3. Calculation of the Grey Relation Coefficient

Grey relation coefficients quantify the correlation between experimental results that
are considered ideal and normalized. The grey relation coefficient ϑit can be calculated
using the following formula:

ϑit =
∆min + ϑ∆max

∆oit + ϑ∆max
(5)

Using the loss estimates for the oth and ith experiment, the formula ∆oi calculates the
grey relationship coefficient ϑi. ∆max denotes the estimated maximum loss, while ∆min
stands for the estimated minimum loss. The variable ϑ denoting the discrimination factor
is between 0 and 1, with an average value of 0.5.

3.4. Calculation of the Grey Relational Grade

In the conversion of several grey relational grades, the engine performance was
assigned a larger share compared to the emission features.
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The grey relational grade, is calculated as:

δi = ∑n
t=1 ϑitωi (6)

provides a comprehensive assessment of the extensive range of performance characteristics.
The sum of all weighting factors (∑ ωi) is equal to 1, where ωi denotes the weighting
component.

Table 3 shows the weighted factors associated with nine responses. The weighted
average of the grey relationship coefficients corresponding to the selected responses forms
the combined grey relational grade. Low, high, and optimal are the three classifications of
the signal-to-noise ratio (S/N). Table 4 shows the values of the grey relational coefficient
and the total grey relational grade.

Table 3. Responses and their corresponding weighting factors.

Response Weighting Factors

EGT 0.045
BSFC 0.181
BTHE 0.227

HC 0.045
CO 0.181
CO2 0.045
O2 0.181

NOX 0.045
SMOKE 0.045

Table 4. Calculated grey relational coefficient and overall grey relational grade.

Exp No Fuel Blend Load ξ(egt) ξ(bsfc) ξ(bthe) ξ(hc) ξ(co) ξ(co2) ξ(o2) ξ(nox) ξ(smoke) grg

1 D 0 0.901099 1 0.333333 0.90625 0.357143 0.85567 0.364238 0.930374 1 0.597221
2 PME 0 0.911111 1 0.333333 0.805556 0.333333 0.873684 0.932203 0.940193 0.6 0.675135
3 PME+5%DEE 0 0.921348 1 0.333333 0.892308 0.454545 0.976471 0.364238 0.948536 0.538462 0.60057
4 PME+10%DEE 0 0.953488 1 0.333333 0.865672 0.555556 1 0.454545 0.979835 0.777778 0.648955
5 PME+15%DEE 0 1 1 0.333333 0.659091 0.555556 0.976471 0.354839 1 0.677419 0.618852
6 D 10 0.780952 0.38407 0.50831 0.725 0.384615 0.709402 0.341615 0.80195 0.777778 0.489637
7 PME 10 0.788462 0.361945 0.535852 0.783784 0.333333 0.761468 1 0.861402 0.567568 0.600773
8 PME+5%DEE 10 0.773585 0.349244 0.51486 1 0.714286 0.734513 0.369128 0.843725 0.488372 0.551778
9 PME+10%DEE 10 0.780952 0.342898 0.526603 0.666667 0.625 0.761468 0.364238 0.862793 0.538462 0.525736

10 PME+15%DEE 10 0.811881 0.333347 0.49757 0.604167 0.714286 0.734513 0.369128 0.885667 0.636364 0.537351
11 D 20 0.61194 0.471984 0.65885 0.637363 0.454545 0.535484 0.901639 0.548486 0.677419 0.618737
12 PME 20 0.59854 0.450584 0.716934 0.716049 0.357143 0.564626 0.846154 0.633669 0.512195 0.600901
13 PME+5%DEE 20 0.594203 0.447316 0.730822 0.920635 0.714286 0.58042 0.359477 0.638972 0.512195 0.589962
14 PME+10%DEE 20 0.602941 0.445757 0.725652 0.58 0.714286 0.572414 0.454545 0.623324 0.636364 0.595283
15 PME+15%DEE 20 0.594203 0.443061 0.712348 0.522523 0.714286 0.557047 0.350318 0.620429 0.777778 0.575407
16 D 30 0.42487 0.498811 0.78641 0.604167 0.5 0.425641 0.820896 0.41005 0.512195 0.617407
17 PME 30 0.473988 0.482906 0.867592 0.659091 0.454545 0.434555 0.774648 0.427429 0.677419 0.629707
18 PME+5%DEE 30 0.473988 0.481962 0.861188 0.794521 0.833333 0.439153 0.350318 0.417415 0.428571 0.614406
19 PME+10%DEE 30 0.471264 0.485213 0.867758 0.513274 0.833333 0.434555 1 0.408483 0.446809 0.721923
20 PME+15%DEE 30 0.450549 0.481765 0.883156 0.47541 0.714286 0.425641 0.337423 0.441189 0.677419 0.591586
21 D 40 0.333333 0.536594 0.915282 0.439394 0.357143 0.333333 0.964912 0.352224 0.344262 0.62769
22 PME 40 0.369369 0.50405 0.993055 0.411348 0.384615 0.344398 0.901639 0.344505 0.333333 0.632954
23 PME+5%DEE 40 0.334694 0.489615 0.921704 0.495726 0.714286 0.341564 0.350318 0.333333 0.355932 0.576469
24 PME+10%DEE 40 0.350427 0.495658 0.999629 0.351515 0.714286 0.34728 0.873016 0.335847 0.368421 0.685406
25 PME+15%DEE 40 0.356522 0.485706 0.887283 0.333333 1 0.338776 0.333333 0.340771 0.512195 0.617717

The signal-to-noise ratio (S/N ratio) quantifies the proportion of extraneous distur-
bance to desired output. It incorporates both the mean and variability of the signal. An
alternative conceptualization involves dividing the energy consumed for the intended
purpose by the energy lost [24,25]. There are three possible scenarios: “Nominal-the-better”
(NTB) for determining the optimal characteristic, which is the median of the specified
upper and lower standard limits as described in Equations (7)–(9); “Larger the better” (LTB)
for maximizing problems; and “Smaller the better” (STB) for minimizing problems.
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For larger the better:

S
N

= −10
[

log
(

∑
(

1
x2

)
/n

)]
(7)

For smaller the better:

S
N

= −10
[
log

(
∑

(
x2
)

/n
)]

(8)

For nominal the better:

S
N

= −10
[
log

(
∑

(
s2
))]

(9)

Responses for the given factor level combination are denoted by ‘x’. For the combina-
tion of factor levels, ‘n’ denotes the number of responses. ‘s’ means the standard deviation
of the responses for each noise component of a specific combination of factor levels.

The criteria “larger is better” is applicable to brake thermal efficiency (BTE), as our aim
is to optimize it. In contrast, for carbon dioxide (CO2), hydrocarbons (HC), NOx (nitrogen
oxides), CO, and BSFC, the criteria “smaller the better” is optimal, as our aim is to reduce
these pollutants. Table 5 shows the exact values measured using the Minitab19 software in
this study. The relevant data can be found in Tables 6 and 7.

Table 5. Response of signal-to-noise ratio.

Level Fuel Blend Load

1 −4.617 −4.048
2 −4.050 −5.354
3 −3.991 −4.497
4 −4.621 −3.965
5 −4.638 −4.053

Delta 0.647 1.389
Rank 2 1

Table 6. Enhanced results using GRG.

S. no. Factors Optimal Level Optimal Value

1 Load 4 30 kg

2 Type of fuel blend 2 PME + 10% DEE

Table 7. Experimental results.

EXP Load
(kg)

Fuel
Blend

EGT
(0C )

BSFC
(kw-hr)

BTE
(%)

HC
(ppm)

CO
(%)

CO2
(%)

O2
(%)

NOX
(ppm)

Smoke
(HSU)

1 30
PME +

10%
DEE

193 0.3664 26.4177 76 0.05 7.2 20.38 826 49

4. Results and Discussion

The two input parameters (fuel and load) and the nine output parameters (EGT, BSFC,
BTE, HC, CO, CO2, O2, NOx, and smoke) are involved in the generation of numerous
permutations. EGT, BSFC, BTE, HC, CO, CO2, O2, NOx, and smoke are all components of
the orthogonal array. The normalized data were then used to create tables, and the grey
relation coefficient was calculated. The grey value is then determined by using weighting
parameters.
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Assign the signal-to-noise ratio (S/N ratio) for each plane after calculating the S/N
ratio for the entire grey relation grade. The MINITAB software is used to perform this
analysis. Table 4 illustrates the expected grey relation coefficient and the total grey relation
grade, while Table 5 shows the response of the S/N ratio for fuel and load. Figure 3 shows
the main effects of the signal-to-noise ratio. At a weight of 30 kg, the ideal load is four.
As shown in Table 6, the optimal fuel is three, and the consistent fuel type is PME + 10%
DEE. The expected results were in excellent contrast with the empirical data. From the data
in Table 5, it can be seen that the load difference has a greater influence on the responses
than the fuel. It could be discussed that the operating load allows for more convenient
manipulation of the responses in contrast to the influence of fuel. Based on the results of
the S/N ratio analysis, the fuel and load show the most favorable responses at levels three
and four, respectively, with S/N ratios of –3.991 and –3.965. The use of PME + 10% DEE at
a load of 30 kg optimizes the performance of the engine, as shown in Figure 3.
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