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Abstract: This paper focuses on the design and implementation of a versatile delivery robot which
integrates a secure locking system, GPS navigation, customer authentication, and a camera system
for real-time monitoring. The advanced locking system ensures the protection of delivered goods
during transit, addressing security concerns. GPS navigation optimizes routes for efficient last-mile
deliveries, reducing overall delivery times. Customer authentication adds an extra layer of security,
allowing only the designated customer, equipped with a unique authentication method, to unlock
and retrieve their parcel. The integrated camera system provides continuous monitoring throughout
the delivery process. The combination of these features showcases technological innovation and also
addresses critical aspects of security and customer trust in autonomous deliveries. The successful
integration of these features positions the delivery robot as a reliable and customer-friendly solution
for the evolving landscape of last-mile logistics.

Keywords: navigation; authentication; last-mile logistics; obstacles; detection; efficiency

1. Introduction

A robot navigates using just an RGB-D camera and a single-board computer, combin-
ing rule-based and learning-based methods to avoid collisions and reach its destination in
real-time. [1]. Smart robots employ deep reinforcement learning to collaboratively navigate
dynamic 3D environments, utilizing the Island Policy Optimization model to efficiently
track and pursue multiple targets simultaneously [2]. And navigation can be carried out
on its own using a smart learning system. This system uses a modular deep-Q-network
architecture and learns everything in a 3D simulator this is called zero-shot transfer which
has adaptability and the ability to avoid collisions [3]. Dynamic Waypoint Navigation
(DWN) enables robots to intelligently plan paths in human environments, selecting way-
points dynamically to navigate efficiently and safely while considering varying speeds and
routes [4]. OABot is a helpful service robot with a smart communication system. This robot
tackles problems like figuring out where it is, moving around safely and planning the best
route to its destination [5,6]. Robots adaptively plan paths amidst changing environments
using classical and heuristic methods, refining their ability to adjust plans based on the
pace of surrounding movements [7]. A self-learning system for wheeled robots that uses
both regular and depth-based camera information, along with real-time traction data, al-
lows these robots to navigate outdoor spaces autonomously [8]. This self-learning method
combines both what the robot sees and hears by integrating audio and visual features [9].
making rescue robots more independent and effective in saving lives. The HiDO-MPC
method takes a smart approach, using a structured system [10].

Research reveals a gap in navigation and delivery techniques, emphasizing the need
for simplicity and versatility, particularly in adapting to changing environments. The
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essence of an environment changing lies in its dynamic adaptability, which is crucial for
effective navigation and delivery systems. Our study focuses on developing a robot capable
of adapting to weather changes while efficiently executing delivery tasks. The integration
of a connected camera enables the robot to monitor and respond to its surroundings,
facilitating easy path management through a mobile interface. This adaptive nature ensures
user-friendly and flexible navigation for effective delivery operations.

2. Methodology

In this section explains the design of the robot and its navigation system is detailed. In
this camera module is incorporated for observing the movement of the robot, with Arduino
serving as the microcontroller and motor drivers and sensors are integrated into the system
to facilitate precise control and navigation which is important for movement of the robot
(Figure 1).
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Figure 1. Block diagram of versatile delivery robot.

3. Design of the Delivery Robot

The delivery robot design maximizes efficiency and accessibility, featuring sturdy
wheels for versatile terrain navigation. A microcontroller circuit serves as the central neural
hub, coordinating communication and core component functions (Table 1). A strategically
positioned battery ensures sustained operation, directly impacting range and reliability.
Atop the robot, a camera provides a comprehensive view for real-time monitoring and
navigation assistance.

Table 1. Specifications of versatile delivery robot.

Components Specifications

1.Arduino Uno ATmega 329

2. Nrf24l01 Module Range of 500 to 800 meters

3. Buzzer Digital Signal to Sound

4. Relay 12v Operation Voltage

5. Servo 180 Degree Rotation

6. L293d Motor Driver IC Motor Control using Signal

7. Esp32 Cam 802.11b/g/n Wi-Fi, and Low-Power CPU

8. 12v Power Supply Input Power

9. Ultrasonic Sensor Range of 10 meters

An open lid facilitates easy loading and unloading of products, emphasizing user-
friendly access. Ultrasonic sensors and LEDs strategically integrated on the frontal section
enhance perceptual capabilities and aid in obstacle detection. Ultrasonic sensors act as
the robot’s eyes, detecting obstacles and enabling safe navigation. LEDs serve as visual
indicators, signaling operational status and enhancing communication with operators
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and bystanders. This combination enhances safety and user-friendly interaction with the
environment. The integration underscores a holistic approach prioritizing functionality
and effective communication (Figure 2).
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The motors provide traction force in the area where the driven wheels’ tires and the
road surface come into contact to propel the vehicle forward. This endeavor ought to
surpass the overall resistive force Ftotal, which is entirely ascertained by a four-dimensional

Ftotal = Fa + Fr + Fc + Fd

where Fa is force, Fr is rolling resistance force, Fc is moving force, and Fd is additional
disturbance.

The motion of the delivery robot is influenced by factors like shape, size, velocity, and
air density.

Fa =
1
2

pCd A f v2

where, P is the density of air, Cd is the drag coefficient, Af is the area of the vehicle front; v
is the vehicle speed.

The rolling resistance force, also known as wheel friction, arises from the deformation
of the wheels and the road surfaces. Factors such as tire types, pressure, temperature, speed
of the Battery Electric Vehicle (BEV), and thread thickness influence the level of wheel
friction. This force can be expressed as follows:

Fr = r Mvgcosα

where, Mv is the vehicle mass, α is the road gradient, and µr is the dimensionless wheel
friction factor

The gravitational force significantly influences the following aspects of the vehicle’s
behavior:

Fc = Mvgsinα

Estimation of Power and Torque

Regarding the backward-facing orientation of the robot model, it precisely follows
the speed profile, and power consumption is determined accordingly. The traction power
required for the robot’s driving speed is calculated as follows:

Ptrac(t) = Mvv(t)
dv(t)

dt
Pres(t)

where the resistant power Pres is:

Pres(t) = Frest(v)
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Pres(t) = (r Mvgcosα+
1
2

pCd A f v2 +Mvgsinα)v

And the acceleration dv(t)
d(t) is the derivative method of the backward calculation differ-

ence:

a(t) =
dv(t)
d(t)

=
vt − vt−1

∆t

When the EM is used in-wheel, in the wheel, its inertia is introduced to the wheels’
wheel inertia and tires’ tire inertia (Iwh). Considering the instant of inertia at the wheels
throughout traction, the strength at the wheels stage becomes

Pωh(t) = Ptrac(t) + Jωh.ωωh.ωωh

ωh = Vt
r

Jωh = 1
2 4(mωh + mEM)r2

4. Result

The development of the navigation and delivery robot presented in this study revolves
around the integration of various components to create a versatile and adaptive system
capable of efficiently navigating different environments while executing delivery tasks
effectively (Figure 3). The design and implementation of the robot encompass several key
aspects, including its physical structure, navigation system, wireless connectivity, obstacle
detection capabilities, and remote-control interface. Alternatively, users can operate the
delivery robot remotely through a web application accessed via its IP address. The web
application serves as a user-friendly interface for controlling the robot’s navigation and
delivery tasks from any internet-enabled device, such as a smartphone, tablet, or computer.
Through the web application, users can monitor the robot’s location, route, and progress in
real-time, as well as send commands for navigation and task execution. This remote-control
capability enhances the robot’s versatility and usability, enabling operators to manage
delivery operations efficiently from any location (Figure 4).
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5. Conclusions

In conclusion, the delivery robot project represents a pioneering leap forward in
modern delivery logistics, offering a comprehensive solution with user-friendly design
principles. This innovative robot not only excels in efficiently navigating diverse terrains
to ensure timely delivery of goods but also prioritizes user accessibility and safety. By
combining sturdy construction with advanced features like real-time monitoring cameras
intuitive indicators and security locking, the robot ensures a smooth and secure delivery
experience for both operators and recipients. Its proactive approach to obstacle detection
and communication fosters trust and cooperation, enhancing overall efficiency and relia-
bility. In essence, the delivery robot project redefines the standards of automated delivery
systems, offering a highly efficient and user-centric solution that addresses the evolving
needs of modern logistics, with its blend of enhanced efficiency and customer satisfaction
in the delivery industry.
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