Mechanisms of Biodeterioration of Structural Materials by Streptomyces spp.: A Review †
Abstract
:1. Introduction
2. Streptomycetes and Biofilm
3. Corrosive Activity of Streptomycetes
3.1. Production of Corrosive Compounds and Biodegradation of Corrosion Inhibitors by Streptomycetes
3.2. The Intensification of Corrosion in Mixed Corrosive Microbial Associations with Strepomyces spp.
4. The Prevention of Corrosion and Biofouling by Streptomyces spp.
4.1. Antimicrobial Metabolites of Streptomycetes in the Biocontrol of MIC
4.2. Nanoparticles and Streptomyces spp. as a Prospect of MIC Biocontrol
5. The Challenges and Potential Directions for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lavanya, M. A brief insight into microbial corrosion and its mitigation with eco-friendly inhibitors. J. Bio- Tribo-Corros. 2021, 7, 125. [Google Scholar] [CrossRef]
- Vaithiyanathan, S.; Chandrasekaran, K.; Barik, R.C. Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion. 3 Biotech 2018, 8, 495. [Google Scholar] [CrossRef] [PubMed]
- Quraishi, M.A.; Chauhan, D.S. Drugs as environmentally sustainable corrosion inhibitors. In Sustainable Corrosion Inhibitors II: Synthesis, Design, and Practical Applications; Hussain, C.M., Verma, C., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2021; pp. 1–17. Available online: https://pubs.acs.org/doi/pdf/10.1021/bk-2021-1404.ch001 (accessed on 27 January 2024).
- Fawzy, A.; Al Bahir, A.; Alqarni, N.; Toghan, A.; Khider, M.; Ibrahim, I.M.; Abulreesh, H.H.; Elbanna, K. Evaluation of synthesized biosurfactants as promising corrosion inhibitors and alternative antibacterial and antidermatophytes agents. Sci. Rep. 2023, 13, 2585. [Google Scholar] [CrossRef]
- Verma, C.; Hussain, C.M.; Quraishi, M.A.; Alfantazi, A. Green surfactants for corrosion control: Design, performance and applications. Adv. Colloid Interface Sci. 2023, 311, 102822. [Google Scholar] [CrossRef] [PubMed]
- Gourbushina, A.A.; Petersen, K. Distribution of microorganisms on ancient wall paintings as related to associated faunal elements. Int. Biodeter. Biodegr. 2000, 46, 277–284. [Google Scholar] [CrossRef]
- Pepe, O.; Sannino, L.; Palomba, S.; Anastasio, M.; Blaiotta, G.; Villani, F.; Moschetti, G. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol. Res. 2010, 165, 21–32. [Google Scholar] [CrossRef]
- Hesham, A.E.; Mohamed, N.H.; Ismail, M.A.; Shoreit, A.A.M. Degradation of natural rubber latex by new Streptomyces labedae strain ASUU03 isolated from Egyptian soil. Microbiology 2015, 84, 351–358. [Google Scholar] [CrossRef]
- Andreyuk, E.I.; Kopteva, Z.P. Mikrobnoe povrezhdenie izolyacionnyh pokrytij gazoprovodov. [Microbial damage to insulating coatings of gas pipelines]. Mikrobiolohichnyi Zh. 1987, 44, 46–49. (In Russian) [Google Scholar]
- Andreiuk, K.I.; Kozlova, I.P.; Koptieva, Z.P.; Piliashenko-Novokhatnyi, A.I.; Zanina, V.V.; Purish, L.M. Mikrobna koroziia pidzemnykh sporud [Microbial Corrosion of Underground Structures]; Naukova Dumka: Kyiv, Ukraine, 2005; 258p. (In Ukrainian) [Google Scholar]
- Ma, Y.; Zhang, Y.; Zhang, R.; Guan, F.; Hou, B.; Duan, J. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: A brief view. Appl. Microbiol. Biotechnol. 2020, 104, 515–525. [Google Scholar] [CrossRef]
- Thompson, A.A.; Wood, J.L.; Palombo, E.A.; Green, W.K.; Wade, S.A. From laboratory tests to field trials: A review of cathodic protection and microbially influenced corrosion. Biofouling 2022, 38, 298–320. [Google Scholar] [CrossRef]
- Ait-Langomazino, N.; Sellier, R.; Jonquet, G.; Trescinski, M. Microbial degradation of bitumen. Experientia 1991, 47, 533–539. [Google Scholar] [CrossRef]
- Wu, J.; Gao, J.; Zhang, D.; Tan, F.; Yin, J.; Wang, Y.; Sun, Y.; Li, E. Microbial communities present on mooring chain steels with different copper contents and corrosion rates. J. Oceanol. Limnol. 2019, 38, 378–394. [Google Scholar] [CrossRef]
- Devanshi, S.; Shah, K.R.; Arora, S.; Saxena, S. Actinomycetes as an Environmental Scrubber; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Blackwood, D.J. An Electrochemist’s Perspective of Microbiologically Influenced Corrosion. Corros. Mater. Degrad. 2018, 1, 59–76. [Google Scholar] [CrossRef]
- Moura, M.C.; Pontual, E.V.; Paiva, P.M.G.; Coelho, L.C.B.B. An outline to corrosive bacteria. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; Volume 1, pp. 11–22. [Google Scholar]
- Nica, D.; Davis, J.L.; Kirby, L.; Zuo, G.; Roberts, D.J. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeter. Biodegr. 2000, 46, 61–68. [Google Scholar] [CrossRef]
- Sarkar, S.; Saha, M.K.; Roy, D.; Jaisankar, P.; Das, S.; Gauri Roy, L.; Gachhui, R.; Sen, T.; Mukherjee, J. Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the sundarbans in a niche-mimic bioreactor. Mar. Biotechnol. 2008, 10, 518–526. [Google Scholar] [CrossRef]
- Mojicevic, M.; D’Agostino, P.M.; Pavic, A.; Vojnovic, S.; Senthamaraikannan, R.; Vasiljevic, B.; Gulder, T.A.M.; Nikodinovic-Runic, J. Streptomyces sp. BV410 isolate from chamomile rhizosphere soil efficiently produces staurosporine with antifungal and antiangiogenic properties. Microbiologyopen 2020, 9, e986. [Google Scholar] [CrossRef] [PubMed]
- Khushboo Kumar, P.; Dubey, K.K.; Usmani, Z.; Sharma, M.; Gupta, V.K. Biotechnological and industrial applications of Streptomyces metabolites. Biorefining 2022, 16, 244–264. [Google Scholar] [CrossRef]
- Liu, J.; Clarke, J.A.; McCann, S.; Hillier, N.K.; Tahlan, K. Analysis of Streptomyces Volatilomes Using Global Molecular Networking Reveals the Presence of Metabolites with Diverse Biological Activities. Microbiol. Spectr. 2022, 10, e0055222. [Google Scholar] [CrossRef] [PubMed]
- Gece, G. Drugs: A review of promising novel corrosion inhibitors. Corros. Sci. 2011, 53, 3873–3898. [Google Scholar] [CrossRef]
- Ignatova-Ivanova, T.S.; Ivanov, R.; Chipev, N. Isolation of microorganisms from Antarctic soils and their use as possible corrosion inhibitors. IJRSB 2015, 3, 164–168. [Google Scholar]
- Bayram, S.; Hussin, M.H.; Hamidon, T.S.; Ozdemir, M. Anticorrosive performance of bacterial eumelanin polymer as a novel corrosion inhibitor doped into hybrid sol-gel matrix. EJOSAT 2022, 35, 9–16. [Google Scholar] [CrossRef]
- Le, K.D.; Yu, N.H.; Park, A.R.; Park, D.-J.; Kim, C.-J.; Kim, J.-C. Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 2022, 10, 791. [Google Scholar] [CrossRef]
- Pereira, P.M.; Santana, F.M.; Van Der Sand, S. Evaluation of Streptomyces spp. Strains as potential biocontrol agents for Pyrenophora tritici-repentis. Biocontrol Sci. Technol. 2022, 32, 1095–1106. [Google Scholar] [CrossRef]
- Schulz, S.; Girhard, M.; Urlacher, V.B. Biocatalysis: Key to selective oxidations. ChemCatChem 2012, 4, 1889–1895. [Google Scholar] [CrossRef]
- Parthipan, P.; Elumalai, P.; Ting, Y.P.; Rahman, P.K.S.M.; Rajasekar, A. Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. Int. Biodeter. Biodegr. 2018, 129, 67–80. [Google Scholar] [CrossRef]
- Goodfellow, M.; Kämpfer, P.; Busse, H.-J.; Trujillo, M.E.; Suzuki, K.; Ludwig, W.; Whitman, W.B. The Actinobacteria, Part A. Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Springer: New York, NY, USA, 2012; Volume 5, 2083p. [Google Scholar]
- Bennett, J.A.; Kandell, G.V.; Kirk, S.G.; McCormick, J.R. Visual and Microscopic Evaluation of Streptomyces Developmental Mutants. J. Vis. Exp. 2018, 139, 57373. [Google Scholar] [CrossRef]
- Antony-Babu, S.; Stien, D.; Eparvier, V.; Parrot, D.; Tomasi, S.; Suzuki, M.T. Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci. Rep. 2017, 7, 11089. [Google Scholar] [CrossRef] [PubMed]
- Borba, M.P.; Witusk, J.P.; Cunha, D.M.; de Lima-Morales, D.; Martins, A.F.; Van Der Sand, S. Whole-genome sequencing-based characterization of Streptomyces sp. 6(4): Focus on natural product. Access Microbiol. 2023, 5, acmi000466.v3. [Google Scholar] [CrossRef]
- Du, X.; Liu, N.; Yan, B.; Li, Y.; Liu, M.; Huang, Y. Proximity-based defensive mutualism between Streptomyces and Mesorhizobium by sharing and sequestering iron. ISME J. 2024, 18, wrad041. [Google Scholar] [CrossRef]
- Etim, I.N.; Wei, J.; Dong, J.; Xu, D.; Chen, N.; Wei, X.; Su, M.; Ke, W. Mitigation of the corrosion-causing Desulfovibrio desulfuricans biofilm using an organic silicon quaternary ammonium salt in alkaline media simulated concrete pore solutions. Biofouling 2018, 34, 1121–1137. [Google Scholar] [CrossRef]
- Simões, L.C.; Gomes, I.B.; Sousa, H.; Borges, A.; Simões, M. Biofilm formation under high shear stress increases resilience to chemical and mechanical challenges. Biofouling 2022, 38, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chun, A.L.M.; Mosayyebi, A.; Butt, A.; Carugo, D.; Salta, M. Early biofilm and streamer formation is mediated by wall shear stress and surface wettability: A multifactorial microfluidic study. Microbiologyopen 2022, 11, e1310. [Google Scholar] [CrossRef] [PubMed]
- Chadderton, R.A.; Christensen, G.L.; Henry-Unrath, P. Implementation and Optimization of Distribution Flushing Programs; American Water Works Association: Denver, CO, USA, 1992; 88p. [Google Scholar]
- El Othmany, R.; Zahir, H.; Ellouali, M.; Latrache, H. Current Understanding on Adhesion and Biofilm Development in Actinobacteria. Int. J. Microbiol. 2021, 2021, 6637438. [Google Scholar] [CrossRef] [PubMed]
- Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 2013, 3, a010306. [Google Scholar] [CrossRef] [PubMed]
- Parthipan, P.; Elumalai, P.; Narenkumar, J.; Machuca, L.L.; Murugan, K.; Karthikeyan, O.P.; Rajasekar, A. Allium sativum (garlic extract) as a green corrosion inhibitor with biocidal properties for the control of MIC in carbon steel and stainless steel in oilfield environments. Int. Biodeter. Biodegr. 2018, 132, 66–73. [Google Scholar] [CrossRef]
- Volkland, H.-P.; Harms, H.; Knopf, K.; Wanner, O.; Zehnder, A.J.B. Corrosion inhibition of mild steel by bacteria. Biofouling 2000, 15, 287–297. [Google Scholar] [CrossRef]
- Zuo, R. Biofilms: Strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biotechnol. 2007, 76, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Earthman, J.C.; Wood, T.K. Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl. Microbiol. Biotechnol. 1997, 47, 62–68. [Google Scholar] [CrossRef]
- Jayaraman, A.; Cheng, E.T.; Earthman, J.C.; Wood, T.K. Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms. JIMB 1997, 18, 396–401. [Google Scholar] [CrossRef]
- Bleich, R.; Watrous, J.D.; Dorrestein, P.C.; Bowers, A.A.; Shank, E.A. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2015, 112, 3086–3091. [Google Scholar] [CrossRef]
- Tung, R.S.; Kung, L.; Slyter, L.L. In vitro effects of the thiopeptide A10255 on ruminal fermentation and microbial populations. J. Dairy Sci. 1992, 75, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, N.; Zelena, L. Inhibition of heterotrophic bacterial biofilm in the soil ferrosphere by Streptomyces spp. and Bacillus velezensis. Biofouling 2022, 38, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, N.; Zelena, L. The intensity of biofilm formation by heterotrophic bacteria isolated from soil ferrosphere. Ecol. Quest. 2023, 34, 37–41. [Google Scholar] [CrossRef]
- Telegdi, J.; Shaban, A.; Trif, L. Review on the microbiologically influenced corrosion and the function of biofilms. Int. J. Corros. Scale Inhib. 2020, 9, 1–33. [Google Scholar] [CrossRef]
- Little, B.J.; Blackwood, D.J.; Hinks, J.; Lauro, F.M.; Marsili, E.; Okamoto, A.; Rice, S.A.; Wade, S.A.; Flemming, H.-C. Microbially influenced corrosion—Any progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Maciejewska, M.; Adam, D.; Naômé, A.; Martinet, L.; Tenconi, E.; Całusińska, M.; Delfosse, P.; Hanikenne, M.; Baurain, D.; Compère, P.; et al. Assessment of the potential role of Streptomyces in Cave Moonmilk formation. Front. Microbiol. 2017, 8, 1181. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, N.; Zelena, L. Some corrosive bacteria isolated from the technogenic soil ecosystem in Chernihiv city (Ukraine). Stud. Quat. 2021, 38, 101–108. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L.; Olhovik, Y. Vydilennia aktynobakterii iz ferosfery gruntu ta yikh identyfikatsiia [Isolation of actinobacteria from the soil ferrosphere and their identification]. BHT 2022, 1, 33–44. (In Ukrainian) [Google Scholar]
- Vupputuri, S.; Fathepure, B.Z.; Wilber, G.G.; Sudoi, E.; Nasrazadani, S.; Ley, M.T.; Ramsey, J.D. Isolation of a sulfur-oxidizing Streptomyces sp. from deteriorating bridge structures and its role in concrete deterioration. Int. Biodeter. Biodegr. 2015, 97, 128–134. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Eghtesad, R.; Sudoi, E.; Vupputuri, S.; Ramsey, J.D.; Ley, M.T. Application of Fourier transform infrared spectroscopy to study concrete degradation induced by biogenic sulfuric acid. Mater. Struct. 2016, 49, 2025–2034. [Google Scholar] [CrossRef]
- Wang, J.; Du, M.; Shan, X. Effect of marine Streptomyces on corrosion behavior of X65 steel in simulated offshore oilfield produced water system. J. Mater. Res. Technol. 2023, 24, 7925–7937. [Google Scholar] [CrossRef]
- Hussain, S.J.; Nowshad, M.M.; Thajuddin, N.; Tamilarasan, T.K.; Abdul Azees, P.A. Biodegradation and Characterization of Streptomyces sp. (JMCACA3) from Acid Corroded Iron Plate. Curr. Microbiol. 2021, 78, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-M.; Zhang, Y.-Y.; Bai, R.-B.; Liu, J.-H.; Yu, M. Corrosion Behavior of Steel A3 under the Combined Effect of Streptomyces and Nocardia sp. Acta Phys.-Chim. Sin. 2009, 25, 921–927. [Google Scholar]
- Li, S.-M.; Zhang, Y.-Y.; Du, J.; Liu, J.-H.; Xu, M. Influence of Streptomyces on the corrosion behavior of steel A3 in Thiobacillus ferrooxidans media. Acta Chim. Sin. 2010, 68, 67–74. [Google Scholar]
- Ashraf, M.A.; Ullah, S.; Ahmad, I.; Qureshi, A.K.; Balkhair, K.S.; Abdur Rehman, M. Green biocides, a promising technology: Current and future applications to industry and industrial processes. J. Sci. Food Agric. 2014, 94, 388–403. [Google Scholar] [CrossRef]
- Okon, N.E. Fermentation product of Streptomyces griseus (albomycin) as a green inhibitor for the corrosion of zinc in H2SO4. GCLR 2010, 3, 307–314. [Google Scholar] [CrossRef]
- Płaza, G.; Achal, V. Biosurfactants: Eco-Friendly and Innovative Biocides against Biocorrosion. Int. J. Mol. Sci. 2020, 21, 2152. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Duan, J.; Shi, X.; Zhang, Y.; Guan, F.; Sand, W.; Hou, B. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives. Int. J. Mol. Sci. 2022, 23, 5566. [Google Scholar] [CrossRef] [PubMed]
- Harir, M.; Bendif, H.; Bellahcene, M.; Fortas, Z.; Pogni, R. Streptomyces Secondary Metabolites. In Basic Biology and Applications of Actinobacteria; Enany, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Jain, P.; Patidar, B.; Bhawsar, J. Potential of nanoparticles as a corrosion inhibitor: A review. J. Bio- Tribo-Corros. 2020, 6, 43. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L.; Mazur, P. A modern view at some dihydroxybenzoate-capped siderophores: Ecological, technical and medical aspects. Environ. Sci. 2021, 4, 134–140. [Google Scholar] [CrossRef]
- Pacheco da Rosa, J.; Korenblum, E.; Franco-Cirigliano, M.N.; Abreu, F.; Lins, U.; Soares, R.M.A.; Macrae, A.; Seldin, L.; Coelho, R.R.R. Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. BioMed Res. Int. 2013, 2013, 309769. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.P.; Tibúrcio, S.R.; Marques, J.M.; Seldin, L.; Coelho, R.R. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Braz. J. Microbiol. 2016, 47, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Bjerk, T.R.; Severino, P.; Jain, S.; Marques, C.; Silva, A.M.; Pashirova, T.; Souto, E.B. Biosurfactants: Properties and Applications in Drug Delivery, Biotechnology and Ecotoxicology. Bioengineering 2021, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, A.I.; Olaniran, A.O. Production and potential biotechnological applications of microbial surfactants: An overview. Saudi J. Biol. Sci. 2021, 28, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Stainsby, F.M.; Hodar, J.; Vaughan, H. Biosurfactant Production by Mycolic Acid-Containing Actinobacteria; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Li, X.; Xiao, X.; Qian, P.Y. Inhibitory effects of a branched-chain fatty acid on larval settlement of the polychaete Hydroides elegans. Mar. Biotechnol. 2009, 11, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dobretsov, S.; Xu, Y.; Xiao, X.; Hung, O.S.; Qian, P.Y. Antifouling diketopiperazines produced by a deep-sea bacterium Streptomyces fungicidicus. Biofouling 2006, 22, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; He, H.; Schulz, S.; Liu, X.; Fusetani, N.; Xiong, H.; Xiao, X.; Qian, P.Y. Potent antifouling compounds produced by marine Streptomyces. Bioresour. Technol. 2010, 101, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Bavya, M.; Mohanapriya, P.; Pazhanimurugan, R.; Balagurunathan, R. Potential bioactive compound from marine actinomycetes against biofouling bacteria. Int. J. Mol. Sci. 2011, 40, 578–582. [Google Scholar]
- Wang, J.; Du, M.; Shan, X.; Xu, T.; Shi, P. Corrosion inhibition study of marine Streptomyces against sulfate-reducing bacteria in oilfield produced water. Corros. Sci. 2023, 223, 111441. [Google Scholar] [CrossRef]
- Al-Mhyawi, S.R. Green synthesis of silver nanoparticles and their inhibitory efficacy on corrosion of carbon steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 2023, 18, 100210. [Google Scholar] [CrossRef]
- Agarwal, A.; Mehra, A.; Karthik, L.; Kumar, G.; Rao, K.V.B. Antibiofouling property of marine actinobacteria and its mediated nanoparticle. Int. J. Nanoparticles 2014, 7, 294–306. [Google Scholar] [CrossRef]
- Zonooz, N.F.; Salouti, M. Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Sci. Iran. 2011, 18, 1631–1635. [Google Scholar] [CrossRef]
- Saravana Kumar, P.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.L.; Ignacimuthu, S.; Al-Dhabi, N.A. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Appl. Nanosci. 2015, 5, 169–180. [Google Scholar] [CrossRef]
- Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.K. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Crit. Rev. Microbiol. 2016, 42, 209–221. [Google Scholar] [CrossRef]
- Baygar, T.; Ugur, A. Biosynthesis of silver nanoparticles by Streptomyces griseorubens isolated from soil and their antioxidant activity. IET Nanobiotechnol. 2017, 11, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Ghilan, A.M.; Arasu, M.V.; Duraipandiyan, V. Green biosynthesis of silver nanoparticles produced from marine Streptomyces sp. Al-Dhabi-89 and their potential applications against wound infection and drug resistant clinical pathogens. J. Photoch. Photobiol. B Biol. 2018, 189, 176–184. [Google Scholar] [CrossRef]
- Ağçeli, G.K.; Hammachi, H.; Kodal, S.P.; Cihangir, N.; Aksu, Z. A novel approach to synthesize TiO2 nanoparticles: Biosynthesis by using Streptomyces sp. HC1. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3221–3229. [Google Scholar] [CrossRef]
- Marathe, K.; Naik, J.; Maheshwari, V. Biogenic synthesis of silver nanoparticles using Streptomyces spp. and their antifungal activity against Fusarium verticillioides. J. Clust. Sci. 2021, 32, 1299–1309. [Google Scholar] [CrossRef]
- Shanmugasundaram, T.; Radhakrishnan, M.; Gopikrishnan, V.; Pazhanimurugan, R.; Balagurunathan, R. A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf. B 2013, 111, 680–687. [Google Scholar] [CrossRef]
- Ubaid, R.; Saroj Kumar, S.; Hemalatha, S. Growth inhibitory effect of oven dried copper nanoparticles (CUNPS) on drug resistant clinical isolates. IJMSE 2018, 15, 12–20. [Google Scholar] [CrossRef]
- Shkodenko, L.; Kassirov, I.; Koshel, E. Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms 2020, 8, 1545. [Google Scholar] [CrossRef] [PubMed]
- Tenzin, T.; Kaur, A. Recent advances in the green synthesis of gold and silver nanostructures for augmented anti-microbial activity. IJMSE 2022, 19, 1–28. [Google Scholar] [CrossRef]
- Teper, P.; Oleszko-Torbus, N.; Bochenek, M.; Hajduk, B.; Kubacki, J.; Jałowiecki, Ł.; Płaza, G.; Kowalczuk, A.; Mendrek, B. Hybrid nanolayers of star polymers and silver nanoparticles with antibacterial activity. Colloids Surf. B 2022, 213, 112404. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, A.T. Green Mitigation Strategy for Cultural Heritage Using Bacterial Biocides. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer: Cham, Switzerland, 2021; pp. 137–154. [Google Scholar]
- Casanova, L.; Ceriani, F.; Messinese, E.; Paterlini, L.; Beretta, S.; Bolzoni, F.M.; Brenna, A.; Diamanti, M.V.; Ormellese, M.; Pedeferri, M. Recent Advances in the Use of Green Corrosion Inhibitors to Prevent Chloride-Induced Corrosion in Reinforced Concrete. Materials 2023, 16, 7462. [Google Scholar] [CrossRef] [PubMed]
Species | Biofilm-Forming Ability | Secondary Metabolites with Antimicrobial Activity/Antagonistic Activity | Corrosive Activity | References |
---|---|---|---|---|
S. parvus strain B7 | powerful | not specified | yes | [41] |
S. pilosus strain DSM40714 | poor | not specified | yes | [42] |
S. lividans strain TK24 | poor | not specified | yes | [44] |
S. lividans strain TK23.1 | poor | not specified | yes | [45] |
S. gardneri strain ChNPU F3 | poor | yes | not specified | [48,49] |
Cause of Corrosion Activity | Species (Compound) | Researched Construction Material | References |
---|---|---|---|
Powerful biofilm | S. parvus strain B7 | carbon steel, stainless steel | [41] |
Poor biofilm | S. lividans strains TK23.1 and TK24 | SAE 1018 steel | [44,45] |
S. pilosus strain DSM40714 | mild steel 37/AISI 10-18 | [42] | |
Changes in electrochemical parameters | Streptomyces sp. | steel A3 | [60] |
Production of corrosive compounds | S. gardneri strain ChNPU F3, S. canus strain NUChC F2 (ammonia) | steel | [53] |
Streptomyces sp. (sulfuric acid) | concrete | [55,56] | |
Streptomyces sp. (organic acids) | X65 steel | [57] | |
Biodegradation of corrosion inhibitors | Streptomyces sp. | benzimidazole-coated mild steel | [58] |
Protective Activity | Species (Compound) | Researched Construction Material | References |
---|---|---|---|
Anticorrosion and/or antimicrobial/ antibiofouling compounds | S. griseus (albomycin) | zinc | [62] |
Streptomyces sp. | steel | [24] | |
Streptomyces sp. (amino acids: phenylalanine, proline; polysaccharides) | X65 steel | [57] | |
Streptomyces sp. | X65 steel | [77] | |
S. parvus strain BSB49 (eumelanin) | mild steel | [25] | |
S. fungicidicus (diketopiperazines) | not used (methods without the use of construction materials) | [71] | |
S. albidoflavus strain UST040711-291 (a group of simple butenolides) | polyvinyl chloride | [72] | |
S. filamentosus strain R1 (requinomycin) | the glass slides | [73] | |
Streptomyces sp. strain VITSDSB (the combination of cultural extract and zirconium oxide nanoparticles) | steel | [74] | |
Streptomyces sp. (tetracyclines, macrolides, lincosamides, aminoglycosides) | not specified | [23] | |
S. lunalinharesii strain 235 | not used (methods without the use of construction materials) | [68,69] | |
S. naganishii strain MA7 (silver nanoparticles) | not specified | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachuk, N.; Zelena, L. Mechanisms of Biodeterioration of Structural Materials by Streptomyces spp.: A Review. Eng. Proc. 2024, 67, 12. https://doi.org/10.3390/engproc2024067012
Tkachuk N, Zelena L. Mechanisms of Biodeterioration of Structural Materials by Streptomyces spp.: A Review. Engineering Proceedings. 2024; 67(1):12. https://doi.org/10.3390/engproc2024067012
Chicago/Turabian StyleTkachuk, Nataliia, and Liubov Zelena. 2024. "Mechanisms of Biodeterioration of Structural Materials by Streptomyces spp.: A Review" Engineering Proceedings 67, no. 1: 12. https://doi.org/10.3390/engproc2024067012
APA StyleTkachuk, N., & Zelena, L. (2024). Mechanisms of Biodeterioration of Structural Materials by Streptomyces spp.: A Review. Engineering Proceedings, 67(1), 12. https://doi.org/10.3390/engproc2024067012