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Abstract: The most critical issues in computational biology are characterizing and predicting unchar-
acterized proteins’ secondary and tertiary structures from their uploaded amino acid sequences in
databases. Aedes albopictus (A. albopictus), sometimes referred to as the Asian tiger mosquito or forest
mosquito and the carrier of dengue-like diseases, has many proteins, many of which are still poorly
understood. The current work aims at elucidating the physicochemical properties and structures of
the as-yet-uncharacterized A. albopictus protein AEW48448.1. ExPASy Protaram, CD Search, SOPMA,
PSIPRED, and other advanced computerized tools were used following the standard flowchart for
characterizing a hypothetical protein to ascertain the roles and structures of AEW48448.1. After
identifying the protein’s secondary and tertiary structures, the structures were evaluated for quality
using tools like PROCHECK and the ProSA-web. Later, the active site was also discovered using
CASTp v3.0. The protein is more stable because it has a higher aliphatic index value and more
negatively charged than positively charged residues. The modeling of the proteins’ 2D and 3D
structures using multiple bioinformatics tools confirmed that they had domains, indicating that
they were functional proteins involved in the host’s antiviral, cytokine, and interferon production
pathways. Additionally, the protein was revealed to have active regions where ligands may bind.
This work aims at elucidating the characteristics and structures of an uncharacterized A. albopictus
protein that may serve as a therapeutic target for the creation of antiviral candidates and vaccines.

Keywords: Aedes albopictus; functional annotation; protein-protein interactions; molecular
characterization

1. Introduction

A. albopictus spreads the arboviruses Dengue (DENV), Zika virus (ZIKV), and Chikun-
gunya (CHIKV) [1]. In temperate and tropical parts of the planet, this mosquito is a strong
and very invasive species [2]. Understanding the basic biology of A. albopictus is crucial
for preventing its aggressive spread, as its exceptional adaptability has led to its rapid
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expansion and global public concern [3]. Studies estimate that nearly 3.9 billion people
worldwide are at risk of contracting DENV, putting about half of the world’s popula-
tion at risk. Despite the lack of a specific cure for severe dengue, early discoveries and
access to quality medical care significantly reduce its fatality rates [4]. The structure of
cells and organisms is one of the many roles that proteins carry out within living things.
They also participate in several crucial processes in vivo through interactions with other
molecules [5]. Uncovering the biological characteristics and activities of these uncharac-
terized proteins from various animals is currently a frequent activity in the domain of
bioinformatics because there are millions of proteins that are still uncharacterized [6,7].
A. albopictus contains several functional proteins, many of which are still unknown or are
poorly understood [8,9]. Developments in computational biology have led to the devel-
opment of numerous platforms and techniques for predicting protein structure, binding
sites, and biological activity [10,11]. Protein studies use bioinformatics techniques to clas-
sify novel domains, evaluate 3D structural conformations, and determine function [12].
Furthermore, this comprehensive understanding can provide effective pharmacological
tactics for developing potential treatments for a variety of disorders [13].

2. Materials and Methods
2.1. Selection of the Hypothetical Protein and Sequence Retrieval

We obtained the amino acid (aa) sequence for cytochrome c oxidase subunit I, partial
mitochondrion protein (A. albopictus), in FASTA format from the NCBI database [14].

2.2. Physicochemical Properties Analysis

Using the ExPASy server ProtParam tool, we found the theoretical isoelectric point
(pI), the instability index, the aliphatic index, the GRAVY (which measures how hydropho-
bic or hydrophilic a protein is), the extinction coefficients, and the amino acid sequence
composition [15].

2.3. Identification and Validation of the Secondary Structure

We applied the self-optimized prediction method with alignment (SOPMA) to antici-
pate secondary structural elements [16].

2.4. Three-Dimensional Structure Prediction and Validation

We predicted the three-dimensional structure of the chosen protein using the SWISS-
MODEL [17] and AlphaFold [18]. Furthermore, we used the PROCHECK software of the
SAVES program (v.6.1) to structurally validate the modeled 3D protein structure [19].

2.5. Ligand Binding Site or Active Site Determination

We used the DeepSite tool [20], PrankWeb server [21], and CASTp v.3.0 server [22] to
predict the active sites of the modeled protein.

2.6. Pathogenecity Prediction

We used CDPred to predict the celiac disease-causing peptides from the protein’s
FASTA sequences [23]. We also utilized the FASTA sequence to construct the protein’s 3D
structure and detect disease-causing protein mutations. We utilized the FASTA sequence to
forecast and scrutinize the location of a protein sequence mutation. Additionally, we made
use of a variety of services, including Polyphen-2, SIFT, predictSNP, MAPP, PhD-SNP, and
SNAP [24]. The Align-GVGD program also used substitution, predicted by predictSNP,
and the FASTA format of the amino acid (AA) sequence to calculate GV and GD [25].

3. Results and Discussion
3.1. Protein Sequence Retrieval

The amino acid (aa) sequence of the cytochrome c oxidase subunit I, partial mito-
chondrial protein of A. albopictus (AEW48448.1), was obtained from the NCBI database.



Eng. Proc. 2024, 67, 14 3 of 8

We modeled the tertiary structure of the protein using the 152 amino acid-long protein
sequence (Figure 1).

Figure 1. Amino acid composition.

3.2. Identification of the Physicochemical Properties

We used ProtParam ExPASy to measure physicochemical parameters using the amino
acid sequence of the protein AEW48448.1 found in A. albopictus. We retrieved the sequence
in FASTA format. The instability index, at 30.29, indicates the protein’s stability with an
index smaller than 40 [26]. The protein’s hypothetical pI (pH 6.10) indicates that it is in
a weak acidic form [5]. There is 56,800.02 Dalton in the molecular weight, 110.08 in the
aliphatic index, 30.29 in the instability index, and 0.731 in the GRAVY, respectively.

The protein has a higher aliphatic index value of 110.08, which is a positive indicator
of greater thermostability over a broad temperature range [27]. A GRAVY index value
of −0.731 revealed the protein’s hydrophilic nature and its potential for increased water
interaction [19]. In vitro, Escherichia coli had an estimated half-life of >10 h; yeast had an
estimated half-life of >20 h; and mammalian reticulocytes had an estimated half-life of
1.9 h.

3.3. Identification and Validation of the Secondary Structure

The cytochrome c oxidase subunit I partial (mitochondrion) protein (A. albopictus) pre-
dicted secondary structural components using the SOPMA program’s default parameters
(window width of 17, number of states of 4, and similarity threshold of 8) (Figure 2).

Figure 2. The SOPMA tool identified the alpha helix (blue color), extended strand (red color), beta-
turn (light-green color), and random coil (purple color) as the secondary structural elements of the
selected protein.

3.4. The Three-Dimensional Protein Structure Anticipation and Assessment

We used the SAVESv6.1 program’s PROCHECK tool to assess the modeled structures
from AlphaFold and SWISS-MODEL servers [5]. We used the Ramachandran plot to assess
the quality of the predicted model (by SWISS-MODEL), finding 404 (92.7%) of the total
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510 residues in the core, 6.9% in the additional allowed regions, and 0.2% in the generously
allowed regions (a, b, l, and p). There was a total of 436 residues that were not glycine or
proline. There were three end-residues that were not Gly or Pro, and 44 and 27 glycine
and proline residues out of a total of 510 residues (Figure 3). We also examined the protein
residues (structure predicted by AlphaFold) in the most favored regions (94.5%), additional
allowed regions (5.2%), generously allowed regions (0.0%), and disallowed regions (0.2%)
(Figure 3). The quality assessment analysis showed that AlphaFold’s predicted structure
outperformed the SWISS-MODEL in terms of quality.

Figure 3. (a) AlphaFold predicted the selected protein’s tertiary structure. (b) AlphaFold’s per-residue
model confidence score. We used the Ramachandran plot analyses by (c) AlphaFold and (d) SWISS-
MODEL to assess the quality of the selected protein. When modeled using the SWISS-MODEL
method, 92.7% of the selected proteins fell within the most preferred region. However, AlphaFold’s
prediction of the selected protein indicates its superior quality (94.5%).

3.5. Ligand Binding Site or Active Site Determination

Ligand binding cavity prediction is particularly significant for drug design because
it cleverly utilizes the protein’s geometric, chemical, and evolutionary properties. One
prediction tool, DeepSite, can predict the protein’s active site where a drug or protein
can bind to reduce protein toxicity [28]. DeepSite predicted that the AEW48448.1 protein
contained three cavities (Figure 4A). Another ligand-binding tool, PrankWeb, predicted
12 pockets in the given protein (Figure 4C). CASTp could detect regions on proteins, outline
them, identify their dimensions, and compute their areas [5]. The highest active sites were
located between the modeled protein’s 800.210 and 1784.976 areas (Figure 4B).
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Figure 4. DeepSite tool (A(1)–A(3)), the CASTp server (B), and the PrankWeb server (C) all use the
active site determination method.

3.6. Pathogenecity Prediction

CDPred generates a tabular output of the peptides from the proteins that cause
celiac disease, making it possible to predict disease-associated peptides. The table shows
the amino acid sequence, the start position, the end position, and the physicochemical
properties of the celiac disease-causing peptide from the protein sequence [23]. Table 1
summarizes the protein’s results (sequence id: AEW48448.1).

Table 1. Prediction of disease associated peptides and its properties.

Sequence Start End Score Hydrophobicity Hydropathicity Hydrophilicity Charge Mol wt.

MIFFMVMPIMIGGFGNWLVP 63 82 0.34 0.34 1.65 −1.31 0 2301.25
FFMVMPIMIGGFGNWLVPLM 65 84 0.32 0.33 1.61 −1.31 0 2301.25
MPIMIGGFGNWLVPLMLGAP 69 88 0.32 0.27 1.2 −1.03 0 2114.98
FPRMNNMSFWMLPPSLTLLL 92 111 0.32 0.05 0.54 −0.89 1 2409.27
MNNMSFWMLPPSLTLLLSSS 95 114 0.32 0.08 0.58 −0.86 0 2270.02
NNMSFWMLPPSLTLLLSSSM 96 115 0.32 0.08 0.58 −0.86 0 2270.02
NMSFWMLPPSLTLLLSSSMV 97 116 0.4 0.13 0.97 −0.95 0 2255.05
MSFWMLPPSLTLLLSSSMVE 98 117 0.33 0.14 0.97 −0.81 −1 2270.06
SFWMLPPSLTLLLSSSMVEN 99 118 0.36 0.09 0.7 −0.73 −1 2252.97
FWMLPPSLTLLLSSSMVENG 100 119 0.33 0.11 0.72 −0.75 −1 2222.95
FIGVNLTFFPQHFLGLAGMP 416 435 0.32 0.21 0.98 −1.05 0.5 2206.95
TPSFPMQLSSSIEWYHTLPP 479 498 0.42 −0.02 −0.33 −0.59 −0.5 2318.92

Predicting SNP, MAPP, PhD-SNP, Polyphen-2, SIFT, and SNAP makes it simple to
identify pathogenic SNVs. Compared to other mutation prediction servers, Mutation
Assessor has the highest sensitivity for all substitutions evaluated by the predict SNP server
(except H41Q). Table 2 lists the values for the measured parameters. All parameters indicate
that M63P, F65M, M69P, M95S, N96M, N97V, M98E, S99N, F100G, and F416P have high
predictive accuracy, while F92L is likely to have high variable apparent accuracy when
compared to T479P. We ranked all parameters from highly deleterious to less predicted, as
shown in Table 2.
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Table 2. Prediction of disease-related mutation.

Mutants GV GD Prediction 1

M63P 0.00 86.59 Class C65
F65M 0.00 28.53 Class C25
M69P 0.00 86.59 Class C65
F92L 0.00 21.82 Class C15
M95S 0.00 134.86 Class C65
N96M 0.00 141.15 Class C65
N97V 0.00 132.88 Class C65
M98E 0.00 126.08 Class C65
S99N 0.00 46.24 Class C45
F100G 0.00 153.13 Class C65
F416P 0.00 113.73 Class C65
T479P 0.00 37.56 Class C35

1 GD >= 65 + Tan(10) × (GVˆ2.5) => Class C65 <=> most likely, GD >= 55 + Tan(10) × (GVˆ2.0) => Class C55,
GD >= 45 + Tan(15) × (GVˆ1.7) => Class C45. GD >= 35 + Tan(50) × (GVˆ1.1) => Class C35. GD >= 25 + Tan(55) ×
(GVˆ0.95) => Class C25, GD >= 15 + Tan(75) × (GVˆ0.6) => Class C15, else (GD < 15 + Tan(75) × (GVˆ0.6)) =>
Class C0 <=> less likely.

The Align-GVGD program’s GD and GV values are crucial as they indicate the distance
between the mutant amino acid and the permitted variation, as indicated by GV [29]. We
predicted all missense mutants in the protein to be neutral, harmful, or unclassified using
the following Align-GVGD criteria: If the substitute falls into the box, then GD = 0. If
not, then GD is higher than 0. Therefore, according to the MSA, GD is a measure of the
biochemical difference between the mutant and the observed variation at that location [30].
Out of the 12 mutants we know of, M63P, M69P, M95S, N96M, N97V, M98E, F100G, and
F416P are very likely to go through missense substitutions, while S99N, T479P, F65M, and
F92L have very little chance (Table 3).

Table 3. Prediction of missense substitutions.

Mutants predictSNP MAPP PhD-SNP Polyphen-2 SIFT SNAP PANTHER Ranging

M63P 86.91% 87.71% 85.82% 56.23% 79.28% 88.52% 76.65% 1
F65M 86.91% 78.34% 81.73% 63.43% 79.28% 72.04% 76.00% 1
M69P 86.91% 87.71% 81.73% 81.14% 79.28% 84.85% 65.27% 1
F92L 60.55% 75.11% 73.26% 67.64% 79.28% 62.21% 61.08% 2
M95S 86.91% 84.18% 77.34% 55.08% 79.28% 72.04% 69.00% 1
N96M 86.91% 84.18% 60.80% 81.14% 79.28% 84.85% 69.86% 1
N97V 86.91% 77.12% 67.62% 81.14% 79.28% 84.85% 66.07% 1
M98E 86.91% 91.38% 87.52% 67.52% 79.28% 84.85% 68.66% 1
S99N 86.91% 76.54% 60.80% 43.12% 79.28% 80.51% 71.86% 1
F100G 86.91% 81.93% 60.80% 81.14% 79.28% 84.85% 78.00% 1
F416P 86.91% 87.71% 85.82% 64.97% 79.28% 80.51% 74.45% 1
T479P 74% 68% 51% 87% 46% 83% 63% 3

4. Conclusions

Using advanced bioinformatics methods to characterize a protein is another novel
challenge, similar to various system biology activities. Our research aims to shed light on
the physicochemical properties, chemical structures, and biological roles of the putative
protein AEW48448.1 from A. albopictus. The protein contains amino acids that have more
negatively charged residues, and it is more temperature-stable due to its high aliphatic
index and low instability index. Using a variety of bioinformatics techniques, we modeled
the protein’s secondary structure and confirmed that it included a domain, indicating its
functional nature. Numerous servers verified the protein’s precise 3D structure through
tertiary structure prediction. Furthermore, the study discovered an active site in the protein
where ligands could bind. More research is needed on the protein to discover innovative
treatment options for dengue, which is a result of A. albopictus’s targeting of the protein.
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