Adsorbents Derived from Plant Sources for Caffeine Removal: Current Research and Future Outlook †
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Adsorbent Property
Specific Surface Area
3.2. Adsorption Parameters
3.2.1. Adsorbent Dosage
3.2.2. pH Level
3.3. Adsorption Models
3.3.1. Adsorption Isotherms
3.3.2. Adsorption Kinetics
3.4. Cost Analysis
3.5. Life Cycle Assessment (LCA)
3.6. Future Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mengesha, D.N.; Abebe, M.W.; Appiah-Ntiamoah, R.; Kim, H. Ground coffee waste-derived carbon for adsorptive removal of caffeine: Effect of surface chemistry and porous structure. Sci. Total Environ. 2022, 818, 151669. [Google Scholar] [CrossRef] [PubMed]
- Presti, D.E. Drugs, the Brain, and Behavior. In Encyclopedia of Human Behavior; Elsevier: Amsterdam, The Netherlands, 2012; pp. 724–731. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I. Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis. J. Mol. Liq. 2019, 296, 112078. [Google Scholar] [CrossRef]
- Vieira, L.R.; Soares, A.M.V.M.; Freitas, R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. Chemosphere 2022, 286, 131675. [Google Scholar] [CrossRef] [PubMed]
- Waleng, N.J.; Nomngongo, P.N. Occurrence of pharmaceuticals in the environmental waters: African and Asian perspectives. Environ. Chem. Ecotoxicol. 2022, 4, 50–66. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Guillén-Navarro, J.M.; Lahora, A. Occurrence and fate of pharmaceuticals in a wastewater treatment plant from southeast of Spain and risk assessment. J. Environ. Manag. 2021, 279, 111565. [Google Scholar] [CrossRef] [PubMed]
- Vilando, A.C.; Rubi, R.V.D.; Lacsa, F.J.F. Utilization of low-cost waste materials in wastewater treatments. In Integrated and Hybrid Process Technology for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 99–119. [Google Scholar] [CrossRef]
- Onaga Medina, F.M.; Aguiar, M.B.; Parolo, M.E.; Avena, M.J. Insights of competitive adsorption on activated carbon of binary caffeine and diclofenac solutions. J. Environ. Manag. 2021, 278, 111523. [Google Scholar] [CrossRef] [PubMed]
- Portinho, R.; Zanella, O.; Féris, L.A. Grape stalk application for caffeine removal through adsorption. J. Environ. Manag. 2017, 202, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Latiza, R.J.P.; Rubi, R.V. Circular Economy Integration in 1G+2G Sugarcane Bioethanol Production: Application of Carbon Capture, Utilization and Storage, Closed-Loop Systems, and Waste Valorization for Sustainability. Appl. Sci. Eng. Prog. 2024, 18, 7448. [Google Scholar] [CrossRef]
- Almeida-Naranjo, C.E.; Aldás, M.B.; Cabrera, G.; Guerrero, V.H. Caffeine removal from synthetic wastewater using magnetic fruit peel composites: Material characterization, isotherm and kinetic studies. Environ. Chall. 2021, 5, 100343. [Google Scholar] [CrossRef]
- Binauhan, M.G.; Adornado, A.P.; Tayo, L.L.; Soriano, A.N.; Rubi, R.V.C. Kinetics and Equilibrium Modeling of Single and Binary Adsorption of Aluminum(III) and Copper(II) Onto Calamansi (Citrofortunella microcarpa) Fruit Peels. Appl. Sci. Eng. Prog. 2021, 15, 5570. [Google Scholar] [CrossRef]
- Okoli, C. A Guide to Conducting a Standalone Systematic Literature Review. Commun. Assoc. Inf. Syst. 2015, 37, 5570. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Quesada, H.B.; De Araújo, T.P.; Cusioli, L.F.; De Barros, M.A.S.D.; Gomes, R.G.; Bergamasco, R. Caffeine removal by chitosan/activated carbon composite beads: Adsorption in tap water and synthetic hospital wastewater. Chem. Eng. Res. Des. 2022, 184, 1–12. [Google Scholar] [CrossRef]
- Da Silva Vasconcelos De Almeida, A.; Vieira, W.T.; Bispo, M.D.; De Melo, S.F.; Da Silva, T.L.; Balliano, T.L.; Vieira, M.G.A.; Soletti, J.I. Caffeine removal using activated biochar from açaí seed (Euterpe oleracea Mart): Experimental study and description of adsorbate properties using Density Functional Theory (DFT). J. Environ. Chem. Eng. 2021, 9, 104891. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Cazetta, A.L.; De Souza, P.S.C.; Spessato, L.; Silva, T.L.; Almeida, V.C. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf. 2018, 147, 64–71. [Google Scholar] [CrossRef]
- Oginni, O.; Singh, K. Effect of carbonization temperature on fuel and caffeine adsorption characteristics of white pine and Norway spruce needle derived biochars. Ind. Crops Prod. 2021, 162, 113261. [Google Scholar] [CrossRef]
- Francoeur, M.; Ferino-Pérez, A.; Yacou, C.; Jean-Marius, C.; Emmanuel, E.; Chérémond, Y.; Jauregui-Haza, U.; Gaspard, S. Activated carbon synthetized from Sargassum (sp) for adsorption of caffeine: Understanding the adsorption mechanism using molecular modeling. J. Environ. Chem. Eng. 2021, 9, 104795. [Google Scholar] [CrossRef]
- Zanella, H.G.; Spessato, L.; Lopes, G.K.P.; Yokoyama, J.T.C.; Silva, M.C.; Souza, P.S.C.; Ronix, A.; Cazetta, A.L.; Almeida, V.C. Caffeine adsorption on activated biochar derived from macrophytes (Eichornia crassipes). J. Mol. Liq. 2021, 340, 117206. [Google Scholar] [CrossRef]
- Keerthanan, S.; Bhatnagar, A.; Mahatantila, K.; Jayasinghe, C.; Ok, Y.S.; Vithanage, M. Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environ. Technol. Innov. 2020, 19, 100847. [Google Scholar] [CrossRef]
- Jaison, A.; Kim, H.; Lee, H.U.; Mohan, A.; Lee, Y.-C. Facile removal of caffeine in 30 seconds using tea waste-derived porous carbon: Effect of surface area and adsorption technique. J. Taiwan Inst. Chem. Eng. 2023, 153, 105205. [Google Scholar] [CrossRef]
- Khan, E.A.; Shahjahan; Khan, T.A. Adsorption of methyl red on activated carbon derived from custard apple (Annona squamosa) fruit shell: Equilibrium isotherm and kinetic studies. J. Mol. Liq. 2018, 249, 1195–1211. [Google Scholar] [CrossRef]
- Torres Castillo, N.E.; Ochoa Sierra, J.S.; Oyervides-Muñoz, M.A.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Parra-Saldívar, R.; Melchor-Martínez, E.M. Exploring the potential of coffee husk as caffeine bio-adsorbent—A mini-review. Case Stud. Chem. Environ. Eng. 2021, 3, 100070. [Google Scholar] [CrossRef]
- Peixoto, B.S.; De Oliveira Mota, L.S.; Dias, I.M.; Muzzi, B.; Albino, M.; Petrecca, M.; Innocenti, C.; De Oliveira, P.C.O.; Romeiro, G.A.; Sangregorio, C.; et al. An alternative synthesis of magnetic biochar from green coconut husks and its application for simultaneous and individual removal of caffeine and salicylic acid from aqueous solution. J. Environ. Chem. Eng. 2023, 11, 110835. [Google Scholar] [CrossRef]
- Keerthanan, S.; Rajapaksha, S.M.; Trakal, L.; Vithanage, M. Caffeine removal by Gliricidia sepium biochar: Influence of pyrolysis temperature and physicochemical properties. Environ. Res. 2020, 189, 109865. [Google Scholar] [CrossRef] [PubMed]
- Galhetas, M.; Mestre, A.S.; Pinto, M.L.; Gulyurtlu, I.; Lopes, H.; Carvalho, A.P. Chars from gasification of coal and pine activated with K2CO3: Acetaminophen and caffeine adsorption from aqueous solutions. J. Colloid Interface Sci. 2014, 433, 94–103. [Google Scholar] [CrossRef]
- Labuto, G.; Carvalho, A.P.; Mestre, A.S.; Dos Santos, M.S.; Modesto, H.R.; Martins, T.D.; Lemos, S.G.; Da Silva, H.D.T.; Carrilho, E.N.V.M.; Carvalho, W.A. Individual and competitive adsorption of ibuprofen and caffeine from primary sewage effluent by yeast-based activated carbon and magnetic carbon nanocomposite. Sustain. Chem. Pharm. 2022, 28, 100703. [Google Scholar] [CrossRef]
- Wei, X.; Liu, J.; Yan, H.; Li, T.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, G. Synthesis of large mesoporous silica for efficient CO2 adsorption using coal gasification fine slag. Sep. Purif. Technol. 2025, 353, 128348. [Google Scholar] [CrossRef]
Adsorbent | SSA (m2/g) | Dosage (g/L) | pH | MAC (mg/g) | Adsorption Isotherm | Adsorption Kinetics | Reference |
---|---|---|---|---|---|---|---|
Orange Peel (Orange) | 0.801 | 3.5 | 6.9 | 15.188 | LM | PFO | [11] |
Banana Peel (Banana) | 0.079 | 9.5 | 6.9 | 6.761 | LM/SPs | PFO | |
Orange Peel Composite (Orange) | 14.282 | 2.5 | 6.9 | 25.604 | LM/SPs | PFO | |
Banana Peel Composite (Banana) | 8.140 | 5.5 | 6.9 | 11.668 | LM | PSO | |
KAC (Chichá-do-cerrado) | 420.46 | 1 | 7 | 391 | FL | PSO | [15] |
CAC (Chichá-do-cerrado) | 53.92 | 1 | 7 | 139.61 | FL | PSO | |
CH-KAC (Chichá-do-cerrado) | 1082.41 | 1 | 7 | 121.9 | LM | PSO | |
CH-CAC (Chichá-do-cerrado) | 240.79 | 1 | 7 | 39.53 | LM | PSO | |
CA-SA 400/10 (Açaí) | 1150.3459 | 1 | 7 | 176.8 | - | PSO | [16] |
Pineapple ACF (Pineapple) | 1031 | 1 | 5.8 | 152.18 | LM | PSO | [17] |
Peanut shell AC (Peanut) | 790 | 0.05 | 5 | 0.63 mmol/g | LM | - | [7] |
Peanut shell AC (Peanut) | 790 | 0.05 | 7 | 1.11 mmol/g | LM | - | |
GS (Grape) | 6.23 | 25 | 2 | 89.194 | SPs | - | [9] |
MGS (Grape) | 4.21 | 15 | 2 | 129.568 | SPs | - | |
GSAC (Grape) | 1099.86 | 1 | 4.0 | 916.679 | SPs | - | |
NS900 (Norway spruce) | 167.71 | 0.25 | 7 | 9.24 | LM | PSO | [18] |
WP900 (White pine) | 156.08 | 0.25 | 7 | 11.85 | LM | PSO | |
SAC (Sargassum) | 754 | 0.6 | 6 | 221.61 | LM | PSO | [19] |
ABC (Macrophyte) | 740 | 1 | 6 | 117.8 | LM | PSO | [20] |
TWBC-SA (Tea) | 576 | 1 | 3.5 | 15.4 | FL | ELV | [21] |
TWPC-800 (Tea) | 2260.82 | 2.5 | - | 491.37 | LM | PSO | [22] |
ACC03 (Custard apple) | 431.31 | 0.8 | 4 | 171.23 | LM | PSO | [23] |
RG (Rice husk) | 63 | 1 | 4 | 8.04 | LM | PSO | [24] |
CW-C-1-800 (Coffee waste) | 1212 | 0.2 | 5 | 274.2 | LM | PFO/PSO | [1] |
MBC1 (Green coconut) | 474 | 1 | - | 45 | SPs | PSO | [25] |
ACP (Green coconut) | 1242 | 1 | - | 259 | SPs | PSO | |
MNC (Green coconut) | 1019 | 1 | - | 168 | SPs | PSO | |
GBC300 (Gliricidia sepium) | 1.02 | 1 | 4.5 | - | FL/TK | ELV/FTP | [26] |
GBC500 (Gliricidia sepium) | 76.30 | 1 | 4.5 | - | FL/TK | ELV/FTP | |
GBC700 (Gliricidia sepium) | 216.40 | 1 | 4.5 | 16.26 | FL/TK | ELV/FTP | |
Pi/1:1/800/2 (Pine wood) | 945 | 6 mg | 5 | 500 | LM | PSO | [27] |
Pi/1:3/800/2 (Pine wood) | 1509 | 6 mg | 5 | 476.2 | LM | PSO | |
YC (Yeast) | 823 | 0.6 | - | 130 | SPs | PSO | [28] |
NP-YC (Yeast) | 644 | 0.6 | - | 139 | SPs | PSO | |
OLC (Luffa cylindrica) | - | 1.67 | 4 | 59.88 | LM | PSO | [3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latiza, R.J.P.; Mustafa, A.; Delos Reyes, K.; Nebres, K.L.; Rubi, R.V.C. Adsorbents Derived from Plant Sources for Caffeine Removal: Current Research and Future Outlook. Eng. Proc. 2024, 67, 15. https://doi.org/10.3390/engproc2024067015
Latiza RJP, Mustafa A, Delos Reyes K, Nebres KL, Rubi RVC. Adsorbents Derived from Plant Sources for Caffeine Removal: Current Research and Future Outlook. Engineering Proceedings. 2024; 67(1):15. https://doi.org/10.3390/engproc2024067015
Chicago/Turabian StyleLatiza, Rich Jhon Paul, Adam Mustafa, Keno Delos Reyes, Kharl Laurence Nebres, and Rugi Vicente C. Rubi. 2024. "Adsorbents Derived from Plant Sources for Caffeine Removal: Current Research and Future Outlook" Engineering Proceedings 67, no. 1: 15. https://doi.org/10.3390/engproc2024067015
APA StyleLatiza, R. J. P., Mustafa, A., Delos Reyes, K., Nebres, K. L., & Rubi, R. V. C. (2024). Adsorbents Derived from Plant Sources for Caffeine Removal: Current Research and Future Outlook. Engineering Proceedings, 67(1), 15. https://doi.org/10.3390/engproc2024067015