Photoluminescence and Refractive Index Dispersion Properties of Zn3−xMx(PO4)2 (M=Co, Ni; x = 1) Nanoparticles †
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussions
3.1. X-ray Diffraction Analysis
3.2. Luminescence Analysis
3.3. Optical Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, N.H.; Deshpande, M.P.; Bhatt, S.V.; Patel, K.R.; Chaki, S.H. Structural and magnetic properties of undoped and Mn doped CdS nanoparticles prepared by chemical co-precipitation method. Adv. Mater. Lett. 2014, 5, 671–677. [Google Scholar] [CrossRef]
- Sreedevi, G.; Venkata Rao, K.; Jaya Ram Pavan Kumar, G.; Rao, B.T.; Cole, S. The Structural, Morphological, Optical and Photoluminescence Studies of Mn2+ Doped CdS/Zn3(PO4)2 Nanocomposites. Iran. J. Mater. Sci. Eng. 2022, 19, 4. [Google Scholar]
- Ji, H.; Huang, Z.; Xia, Z.; Molokeev, M.S.; Atuchin, V.V.; Fang, M.; Huang, S. New yellow-emitting whitlockite-type structure Sr1.75Ca1.25(PO4)2: Eu2+ phosphor for near-UV pumped white light-emitting devices. Inorg. Chem. 2014, 53, 5129–5135. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, M.; Lalère, F.; Nguyen, H.B.L.; Fauth, F.; David, R.; Suard, E.; Croguennec, L.; Masquelier, C. Ag3V2(PO4)2F3, a new compound obtained by Ag+/Na+ ion exchange into the Na3V2(PO4)2F3 framework. J. Mater. Chem. A 2018, 6, 10340–10347. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Cui, M.; Wang, Y.; He, Z. Synthesis and magnetic properties of two fluorophosphates A3Fe4(PO4)2F9 (A = K+ and NH4+) with a tetrahedral spin-cluster chain structure. J. Solid State Chem. 2022, 312, 123164. [Google Scholar] [CrossRef]
- Guo, J.; Tudi, A.; Han, S.; Yang, Z.; Pan, S. Sn2PO4I: An excellent birefringent material with giant optical anisotropy in non π-conjugated phosphate. Angew. Chem. Int. Ed. 2021, 60, 24901–24904. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, Y.; Gong, P.; Kang, L.; Song, G.; Liu, X.; Sun, J.; Lin, Z. Lone-Pair Enhanced Birefringence in an Alkaline-Earth Metal Tin (II) Phosphate BaSn2(PO4)2. Chem. Eur. J. 2019, 25, 5648–5651. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, S.; Yin, W.; Lin, Z.; Yao, J.; Wu, Y. Na3Ca4(TeO3)(PO4)3: A new noncentrosymmetric tellurite phosphate with fascinating multimember-ring architectures and intriguing nonlinear optical performance. Dalt. Trans. 2018, 47, 17198–17201. [Google Scholar] [CrossRef] [PubMed]
- Elouafi, A.; Ouahbi, S.E.; Ezairi, S.; Lmai, F.; Tizliouine, A.; Lassri, H. Structural, Magnetic, and Magnetocaloric Studies of the Potassium Diphosphate KCrP2O7. J. Supercond. Nov. Magn. 2022, 36, 521–528. [Google Scholar] [CrossRef]
- Elouafi, A.; Ezairi, S.; Lmai, F.; Tizliouine, A. Low Working Temperature of Erbium Orthophosphate ErPO4 with Large Magnetocaloric Effect. J. Low Temp. Phys. 2024, 216, 513–521. [Google Scholar] [CrossRef]
- Ezairi, S.; Elouafi, A.; Lmai, F.; Tizliouine, A.; Elbachiri, A. Effect of cerium doping in tuning the optical and photoluminescence properties of TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2023, 34, 1924. [Google Scholar] [CrossRef]
- Wang, D.; Li, T.; Wang, S.; Wang, J.; Shen, C.; Ding, J.; Li, W.; Huang, P.; Lu, C. Characteristics of nonlinear optical absorption and refraction for KDP and DKDP crystals. Opt. Mater. Express 2017, 7, 533–541. [Google Scholar] [CrossRef]
- He, F.; Ge, Y.; Zhao, X.; He, J.; Huang, L.; Gao, D.; Bi, J.; Wang, X.; Zou, G. Two-stage evolution from phosphate to sulfate of new KTP-type family members as UV nonlinear optical materials through chemical cosubstitution-oriented design. Dalt. Trans. 2020, 49, 5276–5282. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.-B.; Liu, L.-F.; Zhou, M. Synthesis of nickel (II) complexes containing modified phenanthroline ligands for potential nonlinear optical applications. Opt. Mater. 2013, 35, 1481–1486. [Google Scholar] [CrossRef]
- Ganesh, V.; Shkir, M.; AlFaify, S.; Sayed, M.A. Effect of Ni2+ doping on structural, optical, mechanical and dielectric properties of ammonium dihydrogen phosphate (ADP) single crystals: A novel NLO material. Optik 2016, 127, 5479–5485. [Google Scholar] [CrossRef]
- Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. [Google Scholar] [CrossRef] [PubMed]
- Surendranath, Y.; Kanan, M.W.; Nocera, D.G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509. [Google Scholar] [CrossRef] [PubMed]
- Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.J.; Dorenbos, P.; Bessodes, M.; Gourier, D. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, D.; Kadyan, P.S.; Kumar, A.; Singh, K.; Chauhan, G.; Singh, I. Electroluminescent Characteristics of bis(5-Chloro-8-hydroxyquinolinato)-Zinc (II) Complex; CSIR: New Delhi, India, 2010. [Google Scholar]
- Beshkar, F.; Al-Nayili, A.; Amiri, O.; Salavati-Niasari, M.; Mousavi-Kamazani, M. Fabrication of S-scheme ZnO/Zn3(PO4)2 heterojunction photocatalyst toward photodegradation of tetracycline antibiotic and photocatalytic mechanism insight. Int. J. Hydrogen Energy 2022, 47, 928–939. [Google Scholar] [CrossRef]
- Dimitrov, V.; Sakka, S. Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 1996, 79, 1741–1745. [Google Scholar] [CrossRef]
Samples | Lattice Parameter | Crystallite Size (nm) | Dislocation Density × 104 Lines/m2 | Strain ε × 10−3 |
---|---|---|---|---|
Zn3(PO4)2 | a = 10.620 Å b = 18.429 Å c = 5.020 Å | 109 | 8.417 | 5.36 |
Zn2Co(PO4)2 | a = 10.568 Å b = 18.257 Å c = 5.025 Å | 95 | 11.080 | 5.94 |
Zn2Ni(PO4)2 | a = 10.562 Å b = 18.224 Å c = 5.013 Å | 87 | 13.211 | 6.21 |
Composition | Zn3(PO4)2 | Zn2Co(PO4)2 | Zn2Ni(PO4)2 |
---|---|---|---|
Exact band gap [eV] | 2.48 | 3.12 | 3.05 |
Linear refractive index, no | 2.55 | 2.36 | 2.38 |
Optical dielectric constant, ɛo | 6.50 | 5.59 | 5.67 |
Linear susceptibility, χ1 [esu] | 0.437 | 0.363 | 0.371 |
Nonlinear susceptibility, χ3 × 10−12 [esu] | 6.25 | 2.97 | 3.22 |
Nonlinear refractive index, n2 × 10−11 [esu] | 9.239 | 4.744 | 5.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El azizi, Y.; Salhi, H.; Elouafi, A.; Tizliouine, A.; Ezairi, S. Photoluminescence and Refractive Index Dispersion Properties of Zn3−xMx(PO4)2 (M=Co, Ni; x = 1) Nanoparticles. Eng. Proc. 2024, 67, 18. https://doi.org/10.3390/engproc2024067018
El azizi Y, Salhi H, Elouafi A, Tizliouine A, Ezairi S. Photoluminescence and Refractive Index Dispersion Properties of Zn3−xMx(PO4)2 (M=Co, Ni; x = 1) Nanoparticles. Engineering Proceedings. 2024; 67(1):18. https://doi.org/10.3390/engproc2024067018
Chicago/Turabian StyleEl azizi, Youssef, Hayat Salhi, Assaad Elouafi, Abdeslam Tizliouine, and Sara Ezairi. 2024. "Photoluminescence and Refractive Index Dispersion Properties of Zn3−xMx(PO4)2 (M=Co, Ni; x = 1) Nanoparticles" Engineering Proceedings 67, no. 1: 18. https://doi.org/10.3390/engproc2024067018
APA StyleEl azizi, Y., Salhi, H., Elouafi, A., Tizliouine, A., & Ezairi, S. (2024). Photoluminescence and Refractive Index Dispersion Properties of Zn3−xMx(PO4)2 (M=Co, Ni; x = 1) Nanoparticles. Engineering Proceedings, 67(1), 18. https://doi.org/10.3390/engproc2024067018