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Abstract: This work presents the use of three-dimensional machine learning approaches, namely the
response surface methodology (RSM), the artificial neural network (ANN), and the adaptive neuro-
fuzzy inference system (ANFIS), to optimise and model the biodiesel yield from waste margarine
oil. The effect of the process parameters methanol-to-oil ratio (3–15 mole), catalyst ratio (0.3–1.5 wt.
%), reaction time (30–90 min), and reaction temperature (30–70 ◦C) were studied. The performance
metric results for the RSM, ANN, and ANFIS were 0.991, 996, and 0.998 for regression (R2); 0.924,
0.566, and 0.324 for root mean square error (RMSE); 0.568, 0.267, and 0.202 for mean absolute error
(MAE); 0.746, 0.333, and 0.226 for mean absolute percentage error (MAPE); 0.008, 0.004, and 0.003
for average relative error (ARE); and 4.503, 2.114, and 1.828 for mean percentage standard deviation
(MPSD). The developed three-dimensional machine learning approach—the RSM, ANN, and ANFIS
models—is a potential method for optimising and modelling biodiesel yield. The study results may
be used to create sustainable, efficient, and economical solutions for recycling waste margarine oil.

Keywords: biodiesel; machine learning; artificial neural network; adaptive neuro-fuzzy inference
system; response surface methodology; waste margarine oil

1. Introduction

Many government policies have endorsed the use of biofuel to reduce the reliance
on fossil fuels and the pursuit of energy security by partly substituting fossil fuels and
reducing the risk of environmental pollution and global warming [1], which are mainly
affected by population growth and current industrialisation. Therefore, new forms of
energy sources are required. Biodiesel is an alternative that has considerably increased in
consideration [2,3]. The transesterification reaction of oils and animal fats in the presence
of a catalyst is the method that is mainly used to produce biodiesel. The catalysts used are
either homogenous or heterogeneous. Potassium hydroxide and sodium hydroxide are the
homogenous catalysts most used in biodiesel production [4–6].

The biodiesel production cost is mainly attributed to the cost of feedstock, for which
75% is attributed to the cost of oil. Therefore, there is a need to use alternatives such as
non-edible oils, as virgin oil leads to a biodiesel production cost of 1.5 times more than fossil
diesel. Waste oils such as waste cooking oil are about two to three times cheaper than virgin
oil, decreasing the biodiesel production cost and making it competitive with petroleum
diesel [7]. Close to five tons per month per factory of waste oils are generated in butter
and margarine production facilities; unfortunately, some of these oils are flushed from
production and disposed of by municipalities, by they can be used as low-cost feedstock
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for biodiesel production [1]. Using waste oils from a butter plan can be a cost-effective way
of producing biodiesel [8].

Machine learning (ML) has been considered an effective method for transforming
biodiesel production by enabling predictive modelling and process optimisation [9]. ML is
a subdivision of artificial intelligence that uses actual values to train a model to manage
complex tasks [10]. It has been reported that ML as a predictive model can predict re-
sponses with high precision. ML is inspired by the autolearning and self-improving ability
of the brain to solve complex tasks. Thus, transesterification process modelling can be im-
proved [11]. Various variables can affect biodiesel production, such as methanol-to-oil ratio,
catalyst ratio, temperature, and time, for which experiments must be performed. Different
statistical techniques are used to predict the effect of process variables on biodiesel yield.
Response surface methodology has been mostly used for process optimisation, predicting
output using fewer experiments [9]. Response surface methodology (RSM) is a tool that
links one or more responses to process variables and combines statistics and mathematics
to enhance and improve processes. Hence, it is used to develop prediction models.

Furthermore, the RSM, when used in transesterification processes, can boost the
competitiveness of biodiesel over fossil fuels [12]. Artificial neural networks (ANNs)
and adaptive neuro-fuzzy inference systems (ANFISs) are the most used ML predictive
techniques. The ANN is a type of ML inspired by a biological brain’s function, structure,
and capacity for learning. ANNs provide solutions to issues that are shown to be difficult
to solve by human or statistical standards. ANNs use complex datasets to model without
needing knowledge of the governing system events. One of the disadvantages of the ANN
is its inability to handle steady linguistic information or datasets. The ANFIS can overcome
these flaws as it is built on a hybrid intelligence system that combines the computational
power of the ANN and simple learning steps and uncertainties to illustrate the ability of
fuzzy logic [13].

This work presents the optimisation and modelling of the transesterification of mar-
garine waste oil using the catalyst ratio, time, methanol-to-oil ratio, and temperature as
process variables and applying the three-dimensional machine learning approaches of
the response surface methodology (RSM), the artificial neural network (ANN), and the
adaptive neuro-fuzzy inference system (ANFIS). The performance of the ANN, ANFIS, and
RSM is evaluated using error metrics to compare the robustness of ML.

2. Materials and Methods

Methanol (99.5%), potassium hydroxide (85%), and phenolphthalein indicators were
purchased from ACE (Associate Chemical Enterprises). The waste margarine oil used as a
triglyceride source was obtained from a local margarine production plant. The expected
output (response) is biodiesel yield. The experimental setup, as shown in Figure 1, consists
of a two-neck round-bottom flask as a reaction vessel, which was fitted with a reflux
condenser to reflux methanol back to the reaction mixture; the heating source was a hot
plate magnetic stirrer, which had an automatic timer and a temperature controller. Waste
margarine oil was dried to remove moisture at a temperature of 110 ◦C for one hour, then
let cool. The cooled oil was used to determine the free fatty acid (FFA) content of the
oil, which was checked according to the method described by [14] and was found to be
1.79%, below 2%, suggesting that biodiesel could be produced from the margarine waste
oil catalysed by potassium hydroxide (KOH) and avoiding saponification.

Biodiesel was produced by reacting approximately 100 g of waste margarine oil
using process parameters, such as methanol-to-oil ratio (3–15 mol/mol), catalyst ratio
(0.3–1.5 wt. %), time (30–90 min), and temperature (30–70 ◦C), as shown in Table 1. The
methanol was mixed with the catalyst and transferred to the reaction vessel, where the
oil was initially transferred. The reaction was carried out at a constant stirring speed of
450 RPM for a time, as per the range in Table 1. The product obtained was let settle and
separated using a separation funnel, and the produced final biodiesel product obtained



Eng. Proc. 2024, 67, 27 3 of 8

was washed with distilled water and dried at 105 ◦C for one hour. The product yield was
calculated using Equation (1).

Design Expert version 13 was used for experimental design, data analysis, optimisa-
tion, and predictive modelling in RSM using a central composite design. Design expert
software was selected for its robustness capabilities in designing and optimising experi-
ments. Twenty-one experimental runs were performed with methanol-to-oil ratio, catalyst
ratio, time, and temperature as independent variables and biodiesel yield as a response.
Neural Network Modular and Neuro-fuzzy were built with an NN toolbox using MATLAB
2021. The divider and function defaults in Matlab divided 70% of the data for training, 15%
for testing, and 15% for validation. The network was trained using feed-forward propa-
gation, and the Levenberg–Marquardt algorithm and linear (purelin) activation function
were used to transfer data between layers. The ANFIS was generated using a grid partition
and trained using a hybrid method; the Sugeno fuzzy inference system type was employed
with the triangular membership function (trimf) used for the MF input type, and the output
type MF used was constant. The ANFIS architecture, as shown in Figure 2, consisted of 5
layers with their respective colours: input (methanol-to-oil ratio, catalyst ratio, time, and
temperature) (black) fuzzification (white), fuzzy rule base (blue), fuzzy inference (white),
output defuzzification (white), and output (yield) (black).

Biodiesel Yield =
Mass o f dry biodiesel

Mass o f oil
× 100 (1)
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Figure 1. Experimental setup [14].

Table 1. Process variable range.

Input Range Output

Methanol/oil ratio (mol/mol) 3–15 Yield (%)
Catalyst ratio 0.3–1.5
Time (minutes) 30–90
Temperature (◦C) 30–70

The performance of the ML methods was evaluated using performance metrics such
as regression coefficient (R2), root mean square error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), average relative error (ARE), and mean percentage
standard deviation (MPSD).
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3. Results and Discussion

RSM was applied using Design Expert 13 (version 13.0.5.0) software; from the fit
summary and lack-of-fit tests, a quadratic model was suggested over the linear model,
a two-factor interaction (2FI) model, since the quadratic model had higher adjusted and
predicted R2 values and the cubic model was found aliased, as shown in Table 2. A
quadratic mathematical model, shown in Equation (2), was obtained, which can predict
the biodiesel yield using the four process parameters in this study. Figure 3 represents
the experimental and predicted data of the RSM and shows an excellent fitting as the
points are very close to the fit line. Numerical optimisation was performed in the RSM,
and an optimum biodiesel yield of 89.09% was obtained with the following conditions:
60 min reaction time, 50 ◦C reaction temperature, 9 mol methanol-to-oil ratio, and 0.9 wt. %
catalyst ratio.

Y = +89.06 + 7.91A + 7.16B + 3.64C + 7.09D + 3.08AB + 0.4762AC + 2.89AD − 1.09BC + 5.43BD + 1.34CD −
6.07A2 − 4.35B2 − 2.74C2 − 3.91D2 (2)

Y is the yield, A is the methanol-to-oil ratio, B is the catalyst ratio, C is time, and
D is temperature. The equation can be used to predict the biodiesel yield for the given
ranges of factors and the respective units of the parameters. The factor coefficients can also
be used to identify the relative impact of individual process variables by comparing the
factor coefficients.
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Table 2. Fit Summary.

Source Sequential
p-Value

Lack-of-Fit
p-Value Adjusted R² Predicted R²

Linear 0.0140 <0.0001 0.4031 0.2790
2FI 0.9363 <0.0001 0.1801 −2.4451

Quadratic <0.0001 0.0808 0.9900 0.7929 Suggested
Cubic 0.0808 0.9958 Aliased

Twenty-one experimental data points were randomly divided into 70% for training
and 30% for validation and testing. The ANN architecture is shown in Figure 4, and the
architecture consists of three layers: an input layer with four neurons, a hidden layer with
17 different nodes, and an output layer with one neuron. The network used for training
was back-propagation. Where W, B and + in the hidden layer represent weights, bias and
activation function, respectively.
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Figure 5 depicts how the network interacts with the training, testing, and validation
data. The correlation coefficients for the training, testing, validation, and test data were
found to be 0.999, 0.996, 0.999, and 0.998, respectively. The straight line demonstrates a
linear correlation, implying that the targeted experimental data (yield) correlate adequately
with the output (predicted data: yield).
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The ANFIS membership parameters and rules were determined using a trial and
error method to determine an appropriate model that predicts the input and output data.
Different tasks were performed to aid in identifying the product layer. The system created
“and” rules using the four process input parameters and membership functions, sending
input through the same number output membership function to convert to output. Figure 6
shows the rule viewer of the ANFIS, which shows the ability of the ANFIS to predict the
yield as the optimum condition of 9 mol methanol-to-oil ratio, 0.9 wt. % catalyst-to-oil ratio,
60 min, and 50 ◦C, giving a yield of 89.1%, close to the one obtained by RSM optimisation
at 89.09%.
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Figure 7 depicts the 3D response curves using the four process variables. As can be
observed from Figure 7, increasing the methanol-to-oil ratio to 9 molar ratio results in an
increase in biodiesel yield, but an increase beyond that resulted in a decrease in yield that
can be attributed to the fact that transesterification, being a reversible reaction excess among
the methanol, favours the forward reaction, but after a specific limit, biodiesel mixing with
methanol causes the reverse reaction, and with the catalyst amount up to 0.9 wt. % beyond
that, a decrease was observed. This behaviour can be attributed to the catalyst forming
soap. A temperature of about 50 ◦C was enough to reach a high yield; a temperature above
60 ◦C could cause methanol evaporation, affecting the contact with oil and thus decreasing
yield. A time of 60 min was enough to reach a high yield beyond that, which caused a
slight decrease, which can be attributed to the fact that the reaction reached equilibrium,
and above that, a reverse reaction can occur; the same behaviour was observed by [15].

The performance of the three ML methods used in this study was evaluated using
error metrics, and the results are summarised in Table 3. From the results presented in the
table, all three ML methods used presented adequate fittings with R2, with all higher than
0.99: 0.991 for RSM, 0.996 for ANN, and 0.998 for ANFIS. ANFIS has shown slightly higher
prediction with its highest R2 and lower error functions, as shown in Table 3.

Table 3. The RSM, ANN, and ANFIS statistical error analysis.

Error Function RSM ANN ANFIS

R2 0.991 0.996 0.998
RMSE 0.924 0.566 0.324
MAE 0.568 0.267 0.202

MAPE 0.746 0.333 0.226
ARE 0.008 0.004 0.003

MPSD 4.503 2.114 1.828
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4. Conclusions

The response surface methodology (RSM), artificial neural network (ANN), and adap-
tive neuro-fuzzy inference system (ANFIS) were used for predictive modelling and opti-
misation with R2 and ARE values of 0.991 and 0.008, 0.996 and 0.004, and 0.998 and 0.002
for RSM, ANN, and ANFIS, respectively. Four process parameters, methanol-to-oil ratio
(3–15 mol), catalyst ratio (0.3–1.5 wt. %), reaction time (30–90 min), and reaction temper-
ature (30–70 ◦C), were studied. The transesterification reaction catalysed by potassium
hydroxide was optimised using a central composite design in the RSM, with the optimum
yield obtained at a 9 mol methanol-to-oil ratio, 0.9 wt. % catalyst ratio, 60 min reaction
time, and 50 ◦C reaction temperature, with 89.09% yield. According to the results, the
developed three-dimensional machine learning approach—the RSM, ANN, and ANFIS
models–-is a potential method for optimising and modelling the production of biodiesel
from waste margarine oil. The study results may be used to create sustainable, efficient,
and economical solutions for recycling waste margarine oil.
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