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Abstract: Eggshell waste is a biodegradable residue composed of more than 90% CaCO3, which
makes it a great candidate to be converted into functional materials for diverse applications. Herein,
domestic hen eggshell waste was dried and calcined in muffle under air at different temperatures
(300 to 900 ◦C) and times (1 or 3 h) to achieve distinctive calcium species, compositions, and solid-
phase transformations. The crystal structures achieved were characterized by X-ray diffraction
(XRD), evidencing the transformation from CaCO3 (calcite) to CaO (lime) at high temperatures and
the formation of Ca(OH)2 (slaked lime) due to the hydration of CaO facilitated by ambient water
molecules. Considering this preliminary results, prepared solids could be useful as low-cost and
metal-free (unsupported) catalysts for different heterogeneous reactions, such as the transesterification
of vegetable oil and/or glycerol, where the presence of basic sites are needed.
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1. Introduction

Food waste valorization has become an interesting and promising alternative for the
production of new materials and the promotion of sustainable development and envi-
ronmental protection [1–3]. For instance, the large amounts of eggshell residues from
processing industries and domestic consumption are still disposed as waste in landfills
without any pretreatment, being a source of organic pollution and contamination [4,5].
However, the synthesis of functional materials from thermo-treated eggshell residue has
been increasing over the years, including its applications as a feed additive, dielectric mate-
rial, fertilizer, bone substitute (hydroxyapatite), low-cost adsorbent for water pollutants
removal, construction additive (limestone), and so on [1,4,6,7]. Since hen eggshells have an
intrinsic pore structure composed of more than 90% CaCO3 (calcite), with smaller amounts
of magnesium carbonate, calcium phosphate, and organic matter (inner membrane), its
transformation into CaO through calcination to obtain solid base catalysts becomes a fast,
simple, and solvent-free alternative [4,6,8,9]. The aim of present work is the valorization of
eggshell waste into CaO/CaCO3 materials with the application as heterogeneous metal-free
catalysts, particularly suitable for glycerol carboxylation (transesterification) to produce
glycerol carbonate.
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2. Materials and Methods
2.1. Synthesis of Materials

Domestic hen eggshell waste was firstly washed with tap water to eliminate impurities
and then the inner membrane was manually removed. The eggshells were dried in an
oven at 80 ◦C for 24 h under air to eliminate moisture. Dried eggshells were then milled
in an agate mortar and calcined in muffle at different temperatures (300 to 900 ◦C) and
times (1 or 3 h) to achieve diverse compositions of calcium species. The obtained cata-
lysts were labeled EG (corresponding to pristine dried eggshell), EG-300, EG-500, EG-700,
EG-900, and EG-900-2 (calcined for 1 h instead of 3) according to the calcination temperature
and time.

2.2. Characterization

Crystal structures achieved were characterized by X-ray diffraction (XRD) in a Rigaku
Ultima IV diffractometer operated at 20 mA and 30 kV with a Cu Kα radiation lamp. Data
were recorded at a scanning rate of 3◦ per minute in the range of 10–80◦. Calcium species
were identified and compared with the International Center for Diffraction Data Standard
(JCPDS) patterns.

3. Results and Discussion

The XRD spectra of dried pristine eggshells (EGs) calcined at 300 ◦C (Figure 1) showed
diffraction lines corresponding to CaCO3 (limestone) with a crystal structure of calcite (PDF
00-005-0586), as expected due to the standard composition (more than 94% calcite) of raw
eggshells [6,10]. Calcination at low to moderate temperatures (lower than 500 ◦C) only
eliminates impurities, water, and organic matter with no phase transformation, as reported
by the other authors [6,9].
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Figure 1. XRD spectra of EG and EG-300.

In case of EG-500 and EG-700 (Figure 2), once again, a temperature of 500 ◦C was not
high enough to trigger the thermal decomposition of CaCO3 to form CaO (lime) and release
CO2 [6,9]. On the other hand, at a calcination temperature of 700 ◦C, some diffraction lines
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attributed to CaO (PDF-00-037-1497) and Ca(OH)2 (slaked lime) (PDF 00-044-1481) could
be observed. This behavior would indicate some extent of mineralization of CaCO3 into
CaO (ash) [11]. The presence of Ca(OH)2 could be associated with the reaction of CaO (easy
to hydrate) with ambient moisture, promoted by the high temperature, as was observed by
other authors [6,12].
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Figure 2. XRD spectra of EG-500 and EG-700.

Finally, at a calcination temperature of 900 ◦C (Figure 3), an increase in CaO formation
was observed. In the case of EG-900, the thermal treatment for 3 h would lead to an excess of
Ca(OH)2 due to the combination of moisture, amount of CaO produced, high temperature,
and long residence time [6,12]. Therefore, a new calcination process at 900 ◦C for only 1 h
was performed (EG-900-2) in order to restrain Ca(OH)2 formation. In this case, CaO was
achieved as the major phase and some remaining CaCO3 as the minor phase.

The several crystal phases achieved herein serve as a starting point for their perfor-
mance evaluation as metal-free base catalysts in transesterification reactions, including
glycerol valorization into glycerol carbonate and biodiesel production [1,4,12].
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4. Conclusions 
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promote sustainable processes and circular economy. Apart from the environmental ben-
efits, suitable metal-free (unsupported) CaO/CaCO3 catalysts for different reactions can be 
achieved by means of simple and green methods of synthesis. This preliminary study pro-
vides a foundation for this final objective. The base catalysts presented herein are being 
thoroughly characterized by different techniques and will be compared with the high-
energy ball-milled catalysts also obtained from hen eggshell waste as a starting material. 
Finally, catalysts of both series selected according to their physicochemical properties, will 
be tested under glycerol carboxylation (transesterification) with dimethyl carbonate to 
form glycerol carbonate.  
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Figure 3. XRD spectra of EG-900 and EG-900-2.

4. Conclusions

Eggshell waste transformation into valuable materials could be an excellent way
to promote sustainable processes and circular economy. Apart from the environmental
benefits, suitable metal-free (unsupported) CaO/CaCO3 catalysts for different reactions
can be achieved by means of simple and green methods of synthesis. This preliminary
study provides a foundation for this final objective. The base catalysts presented herein are
being thoroughly characterized by different techniques and will be compared with the high-
energy ball-milled catalysts also obtained from hen eggshell waste as a starting material.
Finally, catalysts of both series selected according to their physicochemical properties, will
be tested under glycerol carboxylation (transesterification) with dimethyl carbonate to form
glycerol carbonate.
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