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Abstract: The dynamics of the suction manifold of a high-fidelity simulation benchmark model
of a modified supermarket refrigeration system created in MATLAB 2024a and Simulink 2024a is
modeled using a nonlinear system identification technique. The original model consists of a cold
storage room, three open display cases, the suction manifold, and the compressor rack. Since open
display cases are less energy-efficient, they were removed, while the cold storage room with a door
was used for simulation. The suction manifold model has two outputs: the suction pressure and
the compressor’s power consumption; and it has three inputs: the mass flow of refrigerant, the
ambient temperature, and the compressor capacity. A fourteen-day simulation was carried out,
and synthetic data were generated from the input and output data of the simulation model. These
data were divided into estimation data and validation data. Wavelet networks were then utilized to
estimate and validate a nonlinear ARX model. The comparison between the estimation data and the
validation data shows a goodness of fit of 87.8% for the suction pressure and 100% for the compressor
power, with a simulation focus. The 100% fit for the compressor power occurred because wavelet
networks provide excellent identification for nonlinear static systems and the compressor power
response was based on static modeling assumption while the suction pressure response was based on
dynamic modeling assumption. The data-driven identified model of the suction manifold was stable
and robust and could handle strong nonlinearities of the input and output variables when used to
replace the Simulink model of the suction manifold subsystem in the simulation benchmark. The
simulation results clearly demonstrate how complex refrigeration system subsystems can be replaced
with simpler and data-compliant data-driven models.

Keywords: suction manifold; supermarket refrigeration system; nonlinear ARX; wavelet networks

1. Introduction

Model structure selection and parameter estimation are the two steps in the nonlinear
system identification process. Choosing a class of mathematical operators to serve as a
model is the first challenge. The estimating algorithm based on process input–output data,
a class of models to be found, and an appropriate identification criterion are covered in the
following [1]. When the user’s inquiries are not satisfactorily answered by linear system
identification, nonlinear system identification enters the picture. In some situations, the
nonlinear and time-varying nature of the real world makes linear models imprecise or fails
to replicate crucial parts of the behavior of the system being tested [2].

System modeling and identification have made extensive use of nonlinear networks’
ability to approximate broad continuous functions. When very little a priori knowledge is
available, such approximation methods are especially helpful in the black-box identification
of nonlinear systems [3]. The identification of broad nonlinear systems based on radial
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basis networks has also attracted a lot of attention. A new and effective approximation
approach that shows promise is the wavelet decomposition [4]. Wavelets have attracted a
lot of attention recently in a variety of scientific and technical fields. A helpful foundation
for the localized approximations of functions with any level of regularity at various scales
and with the required accuracy is provided by wavelet decompositions.

Wavelets can, therefore, be viewed as a new basis for representing functions. Wavelet-
based networks, also known as simply wavelet networks, are inspired by both feedforward
neural networks and wavelet decompositions. They have been introduced for the identifi-
cation of nonlinear static systems [5,6], but little attention has been paid to the identification
of nonlinear dynamical systems using wavelet networks. Recent advances have also shown
the existence of ortho-normal wavelet bases, from which follow the variability of the rates
of convergence for approximation by wavelet-based networks.

Over the decades, models for refrigeration systems have been examined [7]. Control
system design may become unfeasible due to the fact that analytical modeling for refrig-
eration processes typically results in a large number of equations with several unknown
factors. One suggestion is to construct a discrete nonlinear model from dynamic input and
output data using system identification. Four primary subsystems make up a supermarket
refrigeration system model: the compressor rack, the condenser, the suction manifold, the
expansion valve, and the evaporator of the display cases [8,9]. Afterwards, these separate
models are integrated to simulate an entire commercial refrigeration system, facilitating
the efficient testing of various system configurations.

The suction manifold has received special attention in this study in order to provide
an accurate suction pressure estimate. The suction manifold supplies the refrigerant
coming from the display case to the compressor pack. The suction pressure determines
the operation of the compressors. Turning on more compressors will decrease the volume
of the refrigerant in the suction manifold, which then lowers the suction pressure. The
modeling of the suction manifold subsystem is highly essential for energy consumption
because it helps the refrigeration system to handle disturbances caused by the environment
and loads. The suction manifold subsystem has three inputs: the mass flow of refrigerant,
the ambient temperature, and the compressor capacity. Its two outputs are the suction
pressure and the compressor’s power consumption. The linear estimation for the suction
manifold is unsuccessful due to its strong nonlinearity [10].

Consequently, this paper suggests employing wavelet networks to identify the suction
manifold of a supermarket refrigeration system in a nonlinear manner. The estimation and
validation of a nonlinear autoregressive exogenous input (ARX) model using wavelet net-
works is performed using the system identification toolbox of MATLAB and the Simulink
software. The estimated model is then used to replace the Simulink model of the suc-
tion manifold subsystem of a high-fidelity simulation benchmark model of a commercial
refrigeration system.

The following is the outline for this paper: The suction manifold mode and the nonlin-
ear ARX modeling approach is presented in Section 2. Section 3 presents the simulation
findings and related remarks. Section 4 finally concludes the paper.

2. Materials and Methods
2.1. Dynamic Model of the Suction Manifold of a Supermarket Refrigeration System

A dynamic equation with a single-state Psuc of the suction pressure models the suction
manifold. Determining the mass equilibrium along the suction line can be carried out
as follows:

dmsuc

dt
=

.
msuc,in −

.
Vcompρsuc (1)

The mass flow rate entering the suction manifold is equal to the mass flow rate exiting
the display case evaporator, where msuc is the total mass of refrigerant in the suction line.

.
msuc,in =

.
mre f ,out (2)
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where
.

mre f ,out is the mass flow rate of the refrigerant exiting the evaporator and
.

msuc,in
is the mass flow rate entering the suction line. Rewriting the derivative with respect to
pressure, density, and volume produces the following:

dmsuc

dt
= Vsuc

dρsuc
dt

= Vsuc
dρsuc
dPsuc

dPsuc

dt
(3)

where the volume and density of the refrigerant in the suction line are denoted by Vsuc and
ρsuc, respectively. Equations (1) and (3) are combined, and dPsuc

dt is rearranged to yield the
following final dynamic equation for the suction line:

dPsuc

dt
=

.
msuc −

.
Vcompρsuc

Vsuc
dρsuc
dPsuc

(4)

The volumetric flow rate induced by compressor work that exits the suction manifold
is denoted by

.
Vcomp.

The electrical power consumed by the compressor
.

Wcomp is finally approximated by
the following:

.
Wcomp =

Ccap

100

.
Wcomp,max =

.
Vcompρsuc(his − hoe)

η
(5)

where the controllable input Ccap is the requested capacity in percent (%),
.

Wcomp,max is the
power consumption at maximum capacity, hoe and his are the specific enthalpies in and
out of the compressor assuming an isentropic compression, and η is the efficiency from
an isentropic process to the actual electrical power consumed. The modified model of
supermarket refrigeration system was derived from [11] and is shown in Figure 1.
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Figure 1. Modified model of a supermarket refrigeration system showing the suction manifold and
the compressor rack [11].

2.2. Nonlinear ARX Model

An output function and model regressors make up a nonlinear ARX model. For every
model output, the output functions include one or more mapping objects. A linear function
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and a nonlinear function that act on the model regressors to produce the model output and
a fixed offset for that output can be included in each mapping object. The construction
of a single-output nonlinear ARX model in a simulation scenario is shown in this block
diagram (Figure 2).
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The system identification app in MATLAB computes the nonlinear ARX model output
y in two stages:

(i) Using historical output data, current and past input values, and past input values, it
calculates regressor values. Regressors are simply delayed inputs and outputs, like
u(t−1) and y(t−3). We refer to these regressors as linear regressors. Custom, periodic,
and polynomial regressors are among the additional regressors that can be made. Any
of the regressors can be assigned as an input to either the nonlinear function block or
the output function’s linear function block, or both.

(ii) An output function block is used to translate the regressors to the model output.
Multiple mapping objects, each having parallel blocks for linear, nonlinear, and offset
functions, may be included in the output function block. Consider, for instance, the
following equation:

F(x) = LT(x − r) + g(Q(x − r)) + d (6)

where x is a vector of the regressors, and r is the mean of x. F(x) = LT(x − r) + y0 is the
output of the linear block. The output of the nonlinear function block is represented by
g(Q(x − r)) + y0. The calculations are made well-conditioned by the projection matrix
Q. The combined outputs of the nonlinear and linear blocks have a scalar offset d added.
The exact form of F(x) depends on your choice of output function. You can select from
the available mapping objects, such as tree-partition networks, wavelet networks, and
multilayer neural networks. You can also exclude either the linear or the nonlinear function
block from the output function. When estimating a nonlinear ARX model, the software
computes the model parameter values, such as L, r, d, Q, and other parameters specifying g.

Typically, model orders are selected by trial and error until a model that produces an
accurate fit to the data is obtained. The best nonlinear model for data is estimated based
on the various model structure choices that are explored. The best model is the simplest
model that accurately describes the dynamics [12].

3. Results and Discussions

The suction manifold model has two outputs: the suction pressure and the compres-
sor’s power consumption; and it has three inputs: the mass flow of refrigerant, the ambient
temperature, and the compressor capacity. A fourteen-day simulation was carried out, and
synthetic data were generated from the input and output data of the simulation model. The
data for the first 7 days with 120,960 samples sampled at 5 s were used for estimation while
the data for the last 7 days with 120,961 samples sampled at 5 s were used for validation.
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Wavelet networks were then utilized to estimate and validate a nonlinear ARX model. The
number of wavelets selected for the two outputs is 2 and 20. The prediction error method
(PEM) was employed for estimation, Akaike’s final prediction error (FPE) for the developed
model was 1.277 × 10−16, and the mean-square error (MSE) for the model was 0.0005913
with simulation focus.

From Figures 3 and 4, it can be observed that the model outputs for the estimated
model of the suction manifold closely represent the dynamics of the suction pressure and
the compressor power when compared with the validation data. The goodness of fit of
the measured and the simulated output of the suction pressure gave 87.8%, while the
measured and the simulated output of the compressor power gave 100%. This implies that
the highly nonlinear suction manifold subsystem of a supermarket refrigeration system
can be replaced by a data-driven nonlinear model with great accuracy.
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From Figures 5 and 6, when the estimated model was compared to the original
suction manifold model, it can be observed that the identified model closely represents the
nonlinear system dynamics. This implies that the nonlinear identified model can perfectly
predict the compressor power and also predict the suction pressure to a great extent.
Therefore, it can be deduced that the nonlinear identification of nonlinear systems such
as supermarket refrigeration system subsystems like the suction manifold using wavelet
networks is suitable for deriving low-cost and reliable data-driven models.
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4. Conclusions

A nonlinear system identification of the suction manifold of a supermarket refrigera-
tion system is presented using wavelet networks from the system identification toolbox of
MATLAB and the Simulink software. The wavelet networks were able to estimate a model
that accurately captures the dynamics of the suction manifold subsystem, with a goodness
of fit of 87.8% for the suction pressure and 100% for the compressor power, using simulation
focus. The 100% fit occurred for the compressor power because it has been established in
the literature that wavelet networks provide excellent identification for nonlinear static sys-
tems and the compressor power response was based on static modeling assumption while
the suction pressure response was based on dynamic modeling assumption. This shows
that nonlinear ARX model estimation using wavelet networks is capable of being used to
derive stable and robust systems that can effectively handle the strong nonlinearities of
the input and output variables like the suction manifold. The developed model will help
to achieve low-cost and reliable solutions for refrigeration systems in predicting suction
pressure and accurate estimates of compressor power in the presence of changing ambient
loads. Learning-based strategies for nonlinear systems modeling will be the main topic of
future research.
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