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Abstract: As the object of investigation in the present study, reactive distillation based on the
transesterification of isopropyl acetate (IPAc) and 2,2,3,3,4,4,4-heptafluorobutanol (HFBol) under
acidic conditions is addressed. This process aims to obtain 2,2,3,3,4,4,4-heptafluorobutyl acetate
(HFBAc), which is used in the production of non-aqueous electrolytes, ethyllithium sulphate, charge
retention medium, ultraviolet light-absorbing oligomers, etc. Through a combination of NMR
spectroscopy and GC-MS, it was determined that during the process, the following were primarily
formed in the system: target HFBAc and the by-product, isopropanol. The following side-products
were identified: di-isopropyl ether, acetic acid, water, and 2,2,3,3,4,4,4-heptafluorobutyl isopropyl
ether (HFB-IPEth). No bis(1H,1H-heptafluorobutyl) ether or acetic anhydride were identified in the
system. For HFBol, HFBAc and HFB-IPEth the 1H, 19F and 13C{19F}), 19F-19F COSY NMR, and mass
spectra were reported in this study.

Keywords: 2,2,3,3,4,4,4-heptafluorobutanol; isopropyl acetate; transesterification; reactive distillation;
side-products; di-isopropyl ether; 2,2,3,3,4,4,4-heptafluorobutyl isopropyl ether

1. Introduction

As the object of investigation in the present study, the reactive distillation (RD) process
based on the transesterification of isopropyl acetate (IPAc) and 2,2,3,3,4,4,4-heptafluorobutanol
(HFBol) under acidic conditions is addressed. This process aims at obtain 2,2,3,3,4,4,4-
heptafluorobutyl acetate (HFBAc), which is used in pharmaceutical aerosol compositions
to reduce particle adhesion to can walls, inhibit particle flocculation, and preventing
the creaming of the suspension [1]. It is also used in the production of red-absorbing
dyes for imaging and sensing and red-shifted Förster resonance energy transfer (FRET)
quencher dyes [2]. It can also be used as a more environmentally friendly analogue of
perfluorocarbons for the plasma etching of SiO2 films for semiconductor production [3] and
similar processes.

Thus far, information on methods of HFBAc production is practically absent in the
literature. A number of sources mention its formation as a side-product during the synthesis
of 1,1,1,2,2,3,3-heptafluoro-4-iodobutane (HFBAc ≈ 4%) [4], heptafluorobutyl methacrylate
(HFBAc ≈ 1.3%) [5], and a diacetate ester of aldehydrol [6].

Methods for the synthesis of HFBol esters are generally better researched, with well-
known methods based on reactions with anhydrides (e.g., isobutyric [7] and methacrylic) [8],
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halogen anhydrides (e.g., 2-propenoyl chloride) [9], various acids [10–14] (including elec-
trochemical methods at room temperature without the usage of catalysts) [15], methyl and
ethyl esters of halogen-substituted acids [16], and methyl methacrylate followed by the
polymerization of heptafluorobutyl methacrylate by a double bond [17].

To select suitable conditions for the synthesis and purification of HFBAc, it is necessary
to control the composition of the reaction mixture while varying parameters such as time
processing, process temperature, and the composition and ratio of initial reagents. At the
same time, quantitative analysis is quite difficult without understanding the qualitative
composition, including the composition of reaction side-products and their formation
conditions. As a number of different side-products are formed during the transesterification
reaction between IPAc and HFBol, the aim of the present study is a qualitative analysis
of the reaction products via a combination of gas chromatography–mass spectrometry
(GC-MS) and nuclear magnetic resonance (NMR) spectroscopy.

2. Materials and Methods

In the present study, the RD process with the initial equimolar ratio of reagents was
carried out in batch mode at atmospheric pressure, and the temperature of the reaction
varied from 95 to 105 ◦C. The identification of by-products requires a significant (detectable)
amount of the last one in the reaction mixture. Thus, the process was carried out under
“harsh” acidic conditions; H2SO4 was used as a catalyst (up to ≈0.2 mol. fr. in the reaction
area). Information on the compounds used in this study is presented in Table 1.

Table 1. Specifications of the compounds used.

Chemical Name CAS-No Molar Mass
M/g·mol−1 Supplier Initial Mass

Fraction Purity
Purification in

Laboratory

Mass Fraction
After Purification

(GC a)

2,2,3,3,4,4,4-
heptafluorobutanol 375-01-9 200.05 P&M Invest 0.60–0.90

Heteroazeotropic
distillation;
distillation

≥0.998

Isopropyl acetate 108-21-4 102.1 ECOS-1 0.998 none -

Sulfuric acid 7664-93-9 98.07 Merk 0.98 none -

Dimethyl
sulfoxide-d6 2206-27-1 84.17 Solvex-D 0.998 atom % D none -

a Gas chromatography—flame ionization detector (Agilent 6890 N equipped with a Restek RTX-1701 RK12054
capillary column;Agilent Technologies, Inc., Wilmington, DE, USA).

Mass spectra were determined using the gas chromatograph Maestro-αMS with a
quadrupole mass spectrometer (Interlab, Moscow, Russia). Chromatographic separations
were carried out using a capillary column SCI-5MS (30 m × 0.25 mm i.d., film thickness
0.25 µm; MEGA S.r.l, Legnano, Italy). The injector temperature was set at 250 ◦C in
split mode (split ratio 1/100); the column (oven) temperature was 35 ◦C (4 min). The
carrier gas was helium at a constant flow of 1.0 mL·min−1. The ion source temperature
and the interface temperature were 230 ◦C and 250 ◦C, respectively. The spectra were
obtained in SCAN mode. The electron impact ionization energy was 70 eV, and the mass
range was m/z 29–300. The Bruker Avance II—300 MHz NMR spectrometer (Bruker Corp.,
Billerica, MA, USA) was used to obtain 1H and 19F spectra of studied samples at the
frequencies of 300.211 MHz and 282.499 MHz, respectively, using internal deuterium
lock. The QOne AS400 quantum-I Plus—400 MHz NMR spectrometer (QOneTec, Wuhan,
China) was used to obtain 13C{19F}, 19F and 19F-19F COSY spectra of studied samples at the
frequencies of 100.549 MHz and 376.263 MHz, respectively, using internal deuterium lock.
Tetramethylsilane and triclorofluoromethane were used as external references. Dimethyl
sulfoxide-d6 (d-DMSO) was used as a solvent. Mass Comparator MC-1000 (A&D Company
Ltd, Tokyo, Japan) was used to measure sample weight.
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3. Results and Discussion

The RD process considered in this study is based on the transesterification reaction
of IPAc and HFBol under acidic conditions. According to preliminary experimental data,
in addition to the two reagents, target product HFBAc and by-product isopropanol (IPol),
a number of side-products were found to be present in the reaction mixture. Preliminary
studies of the reaction mixture showed the presence of water in the samples. It follows that
the presence of alcohols (by-product—IPol and reagent—HFBol) in the system suggests
their possible intermolecular dehydration (potentially, the formation of up to three ethers—
2,2,3,3,4,4,4-heptafluorobutyl isopropyl ether (HFB-IPEth), di-isopropyl ether (IPEth) and
bis(1H,1H-heptafluorobutyl) ether). The presence of water in the reaction area may also
lead to a hydration of IPAc to form IPol and acetic acid (AAc).

A total of six components were detected in the investigated reaction mixtures using GC-
MS, four of which were confirmed using a library search. A comparison of the identified
components’ spectra with those from the NIST database is presented in Figure 1. The
identified components were IPol (NIST# 289584, ID# 19648, DB: mainlib), IPAc (NIST#
429409, ID# 2939, DB: relib), IPEth (NIST# 423843, ID# 4971, DB: relib), and HFBol (NIST#
133587, ID# 1882 DB: mainlib).
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169 and 183, which are consistent with chain fragmentation. The observed difference in 
base ion can be aĴributed to the preferred fragmentation pathways. In the case of the 
HFBAc, the preferred fragmentation pathway results in the loss of the acetate group (m/z 
43), while in the case of the HFB-IPEth, the methyl group is eliminated, which results in a 
base ion at m/z 227. Observed EI fragment mass-to-charge ratios and corresponding prod-
ucts ions for HFBAc and HFB-IPEth are listed in Table 2. 

Figure 1. NIST library spectrum matching (red—experimental spectrum; blue—library spectrum):
(a) Isopropanol; (b) Isopropyl acetate; (c) Di-isopropyl ether; (d) 2,2,3,3,4,4,4-heptafluorobutanol.

The unknown components were identified by fragment ions obtained by electron
ionization (EI). Figure 2 presents the mass spectra of these components. In both cases, the
heaviest fragment ion is observed at m/z 242. According to the reaction, two products with
this molecular mass are possible, HFBAc and HFB-IPEth. The presence of the 2,2,3,3,4,4,4-
heptafluorobutyl fragment is evidenced by the occurrence of fragment ions at m/z 69, 119,
169 and 183, which are consistent with chain fragmentation. The observed difference in
base ion can be attributed to the preferred fragmentation pathways. In the case of the
HFBAc, the preferred fragmentation pathway results in the loss of the acetate group (m/z
43), while in the case of the HFB-IPEth, the methyl group is eliminated, which results in
a base ion at m/z 227. Observed EI fragment mass-to-charge ratios and corresponding
products ions for HFBAc and HFB-IPEth are listed in Table 2.
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Figure 2. Mass spectra of 2,2,3,3,4,4,4-heptafluorobutyl acetate (a) and 2,2,3,3,4,4,4-heptafluorobutyl
isopropyl ester (b).

Table 2. List of observed EI fragment mass-to-charge ratios and corresponding products ions for
heptafluorobutyl acetate (Figure 2a) and 2,2,3,3,4,4,4-heptafluorobutyl isopropyl ester (Figure 2b).

m/z (Figure 2a) Fragment Ion (Figure 2a) m/z (Figure 2b) Fragment Ion (Figure 2b)

242 [M]+ 242 [M]+

222 [M-HF]+ 241 [M-H]+

183 [CF3CF2CF2CH2]+ 227 [M-CH3]+

169 [CF3CF2CF2]+ 169 [CF3CF2CF2]+

150 [C3F6]+ 119 [C2F5]+

119 [C2F5]+ 69 [CF3]+

100 [C2F4]+ 64 [CF2CH2]+

69 [CF3]+ 59 [i-PrO]+

64 [CF2CH2]+ 45 [CH2CH=OH]+

43 [CH3CO]+ 43 [i-Pr]+

The classical method for organic chemists to identify components is NMR spectroscopy.
However, due to the congestion and complexity of the resulting spectra, their interpretation
can be unnecessarily time-consuming and sometimes simply impossible. By separating
components prior to detection, GC-MS is a powerful tool for the analysis of mixtures of
volatile and temperature stable organic compounds, both in addition to NMR spectroscopy
and individually. The obtained GC-MS data, literature, and theoretical analyses, as well as
NMR spectra of samples of a number of supposed reaction products in pure form provided
an opportunity to identify the NMR spectra of the reaction mixture and correlate each of
the peaks to their corresponding components (Figure 3).

Thus, through a combination of NMR spectroscopy and GC-MS, it was determined that
during the reaction of IPAc and HFBol under acidic conditions, the following were primarily
formed in the system: target HFBAc and by-product IPol. The following side-products
were identified: IPEth, AAc, water, and HFB-IPEth. No bis(1H,1H-heptafluorobutyl) ether
traces were identified in the system. The overall reaction can be represented as follows:

HFBol + IPAc←→ HFBAc + (HFB− IPEth) + IPol + AAc + H2O + IPEth

Therefore, it can be stated that there is an intermolecular dehydration between IPol
and HFBol and intermolecular dehydration between IPol molecules, which leads to the
appearance of water, HFB-IPEth, and IPEth in the system. The presence of water and AAc
in the system indicates that the IPAc hydration is taking place. The esterification reaction of
AAc and HFBol, as well as the hydrolysis of HFBAc, can also be stated with full confidence.
Among the less likely reactions are the following: HFBol + IPEth←→ . . .; IPAc + IPol←→
. . .; HFBAc + Ipol←→ . . .; HFBAc + IPEth←→ . . .; HFB-IPEth + Aac←→ . . ..
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The data obtained allowed us to correlate atom groups of fluorinated compounds with
their chemical shifts on 1H in d-DMSO (Figure 4), 19F, 19F-19F COSY (Figure 5) and 13C{19F}
(Figure 6) spectra. The data are summarized in Table 3.
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In conclusion, it is worth noting that there is a significant material balance divergence
during the RD process for no apparent reason. This can be explained by the formation
of propylene during the dehydration of IPol, less likely IPEth. At the same time, the
complete dehydration of IPol [18,19] to form water and propylene proceeds under “harsher”
conditions compared to those previously investigated. One way or another, propylene
formation should be accompanied by the presence of corresponding traces of the component
on the 1H NMR spectra of the samples and/or gas emission during the investigation of the
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chemical constituent of the process in the stirred reactor. Both conditions were not met in
an explicit form.

Table 3. Structure of fluorinated compounds and group chemical shifts.

2,2,3,3,4,4,4-Heptafluorobutanol 2,2,3,3,4,4,4-Heptafluorobutyl Acetate 2,2,3,3,4,4,4-Heptafluorobutyl Isopropyl
Ester
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If propylene is formed, it is possible reaction that a reaction could occur in the system
between propylene and HFBol, leading to HFB-IPEth formation. The reactions of non-
fluorinated olefins with HFBol have not been presented in the literature, but it can be
assumed that they proceed similarly to HFBol + hexafluoropropylene interactions. For
example, a number of reactions between a type of alcohol with halogen–olefin to form an
ether have been discussed in the literature. The reaction of HFBol with hexafluoropropylene
is exemplified. This reaction is carried out at 25 ◦C with 100% conversion, and the content
of the target ether in the reaction mixture is 96% [20,21]. Another example is the reaction of
HFBol with 3-halagen-1-propene with perfluoroalkyl allyl ether formation [22,23].

4. Conclusions

In the present study, the combination of GC-MS and NMR spectroscopy proved to be
an invaluable tool for the successful identification of the components present in the reaction
mixture. The approach was used to show and indicate that HFBAc, IPEth, AAc, IPol, water,
and HFB-IPEth are formed as the reaction products of IPAc and HFBol. Another important
point is that this study provides data on an the new and unstudied compound, HFB-IPEth,
for which there was no CAS No. Based on the obtained results, the paper also shows that no
bis(1H,1H-heptafluorobutyl) ether traces were identified in the system; the overall reaction
and possible interaction among the components of the reaction mixture is described. In
addition, original data on the mass spectra and 1H, 19F, 19F-19F COSY and 13C{19F} NMR
spectra of the fluorinated compounds are presented. This information is of interest for a
wide range of fields of knowledge, where the compounds under study will be addressed in
one form or another.
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