Bagasse-Based Cellulose Nanocrystal–Magnetic Iron Oxide Nanocomposite for Removal of Chromium (VI) from Aqua Media †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Methods
2.3. Characterisation
2.4. Batch Adsorption Studies
2.4.1. Effect of pH
2.4.2. Adsorbent Dosage
2.4.3. Hexavalent Chromium Concentration
2.5. Adsorption Kinetics
2.6. Spectrophotometric Analysis
3. Results and Discussions
3.1. Spectroscopic Analysis
3.2. Adsorption Studies
3.2.1. Effect of Solution pH on Hexavalent Chromium Sorption
3.2.2. Effect of Adsorbent Dosage
3.2.3. Effect of Adsorbate Feed
3.3. Kinetics Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.F.; Mofijur, M.; Nuzhat, S.; Chowdhury, A.T.; Rafa, N.; Uddin, M.A.; Inayat, A.; Mahlia, T.M.I.; Ong, H.C.; Chia, W.Y. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912. [Google Scholar] [CrossRef]
- Organisation, W.H. International decade for action water for life, 2005–2015. Wkly. Epidemiol. Rec. Relevé Épidémiologique Hebd. 2005, 80, 195–200. [Google Scholar]
- Salman, S.M. United Nations General Assembly Resolution: International decade for action, water for life, 2005–2015: A water forum contribution. Water Int. 2005, 30, 415–418. [Google Scholar] [CrossRef]
- Turok-Squire, R.L. The Pressure of Incommensurability: When Water Is Life Becomes Water for Life at the United Nations. In Globalisation, Ideology and Social Justice Discourses; Springer: Berlin/Heidelberg, Germany, 2022; pp. 229–241. [Google Scholar]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Siddique, S.; Ahmad, T.; Bashir, H.; Munir, M.; Mahpara, S.; Malik, I.S.; Wajid, K.; Ugulu, I. A study on the transfer of chromium from meadows to grazing livestock: An assessment of health risk. Environ. Sci. Pollut. Res. 2020, 27, 26694–26701. [Google Scholar] [CrossRef]
- Mohod, C.V.; Dhote, J. Review of heavy metals in drinking water and their effect on human health. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 2992–2996. [Google Scholar]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A revolution in modern industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterisation, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef]
- Evans, S.K.; Wesley, O.N.; Koech, L.; Nelana, S.M.; Rutto, H.L. Structural Features of Cellulose and Cellulose Nanocrystals via In Situ Incorporation of Magnetic Iron Oxide Nanoparticles: Modification and Characterisation. Coatings 2022, 13, 39. [Google Scholar] [CrossRef]
- Suter, E.K.; Rutto, H.L.; Wesley, O.N.; Banza, M. Stabilized Bare Superparamagnetic Iron Oxide Nanoparticles: Synthesis and Characterisation. J. Nano Res. 2023, 80, 81–96. [Google Scholar] [CrossRef]
- Raj, V.; Chauhan, M.S.; Pal, S.L. Potential of sugarcane bagasse in remediation of heavy metals: A review. Chemosphere 2022, 307, 135825. [Google Scholar] [CrossRef]
- Evans, S.K.; Wesley, O.N.; Nathan, O.; Moloto, M.J. Chemically purified cellulose and its nanocrystals from sugarcane baggase: Isolation and characterisation. Heliyon 2019, 5, e02635. [Google Scholar] [CrossRef]
- Wiryawan, A.; Retnowati, R.; Burhan, P.; Syekhfani, S. Method of analysis for determination of the chromium (Cr) species in water samples by spectrophotometry with diphenylcarbazide. J. Environ. Eng. Sustain. Technol. 2018, 5, 37–46. [Google Scholar] [CrossRef]
- Johar, N.; Ahmad, I.; Dufresne, A. Extraction, preparation and characterisation of cellulose fibres and nanocrystals from rice husk. Ind. Crop. Prod. 2012, 37, 93–99. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Lin, S.; Xu, M.; Zhang, W.; Hua, X.; Lin, K. Quantitative effects of amination degree on the magnetic iron oxide nanoparticles (MIONPs) using as adsorbents to remove aqueous heavy metal ions. J. Hazard. Mater. 2017, 335, 47–55. [Google Scholar] [CrossRef]
- Cristiano, E.; Hu, Y.-J.; Siegfried, M.; Kaplan, D.; Nitsche, H. A comparison of point of zero charge measurement methodology. Clays Clay Miner. 2011, 59, 107–115. [Google Scholar] [CrossRef]
- Favela-Camacho, S.E.; Samaniego-Benítez, E.J.; Godínez-García, A.; Avilés-Arellano, L.M.; Pérez-Robles, J.F. How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties. Colloids Surf. Physicochem. Eng. Asp. 2019, 574, 29–35. [Google Scholar] [CrossRef]
- Li, T.; Huang, X.; Wang, Q.; Yang, G. Adsorption of metal ions at kaolinite surfaces: Ion-specific effects, and impacts of charge source and hydroxide formation. Appl. Clay Sci. 2020, 194, 105706. [Google Scholar] [CrossRef]
- Cruz-Lopes, L.P.; Macena, M.; Esteves, B.; Guiné, R.P.F. Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials. Open Agric. 2021, 6, 115–123. [Google Scholar] [CrossRef]
- Dhumal, R.; Sadgir, P. Bioadsorbents for the removal of salt ions from saline water: A comprehensive review. J. Eng. Appl. Sci. 2023, 70, 80. [Google Scholar] [CrossRef]
- Dvoynenko, O.; Lo, S.-L.; Chen, Y.-J.; Chen, G.W.; Tsai, H.-M.; Wang, Y.-L.; Wang, J.-K. Speciation analysis of Cr (VI) and Cr (III) in water with surface-enhanced Raman spectroscopy. ACS Omega 2021, 6, 2052–2059. [Google Scholar] [CrossRef]
- McKinley, J.P.; Jenne, E.A. Experimental investigation and review of the “solids concentration” effect in adsorption studies. Environ. Sci. Technol. 1991, 25, 2082–2087. [Google Scholar] [CrossRef]
- Qasem, N.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef]
- Ugbea, F.A.; Ikudayisi-Ugbeb, V.A.; Yakubuc, M.O. Adsorptive removal of Cd2+, Cr3+ and Cr6+ using natural and synthetic goethite particles: Kinetics study. J. New Technol. Mater. 2020, 10, 29. [Google Scholar] [CrossRef]
- Rudi, N.N.; Muhamad, M.S.; Te Chuan, L.; Alipal, J.; Omar, S.; Hamidon, N.; Abdul Hamid, N.H.; Mohamed Sunar, N.; Ali, R.; Harun, H. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon 2020, 6, e05049. [Google Scholar] [CrossRef]
Models | Kinetic Values | ||||
---|---|---|---|---|---|
qe (exp) (mg/g) | qe (calc) (mg/g) | R2 | K1 | Kid | |
Pseudo-first order | 76.34 | 0.69 | 0.9785 | 0.050 | |
Pseudo-second order | 16.32 | 5.26 | 0.9999 | 0.1327 | |
Inter-particle diffusion model | 18.32 | 10.89 | 0.9942 | 2.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suter, E.; Rutto, H.; Seodigeng, T.; Kiambi, L.; Omwoyo, W. Bagasse-Based Cellulose Nanocrystal–Magnetic Iron Oxide Nanocomposite for Removal of Chromium (VI) from Aqua Media. Eng. Proc. 2024, 67, 5. https://doi.org/10.3390/engproc2024067005
Suter E, Rutto H, Seodigeng T, Kiambi L, Omwoyo W. Bagasse-Based Cellulose Nanocrystal–Magnetic Iron Oxide Nanocomposite for Removal of Chromium (VI) from Aqua Media. Engineering Proceedings. 2024; 67(1):5. https://doi.org/10.3390/engproc2024067005
Chicago/Turabian StyleSuter, Evans, Hilary Rutto, Tumisangs Seodigeng, Lewis Kiambi, and Wesley Omwoyo. 2024. "Bagasse-Based Cellulose Nanocrystal–Magnetic Iron Oxide Nanocomposite for Removal of Chromium (VI) from Aqua Media" Engineering Proceedings 67, no. 1: 5. https://doi.org/10.3390/engproc2024067005
APA StyleSuter, E., Rutto, H., Seodigeng, T., Kiambi, L., & Omwoyo, W. (2024). Bagasse-Based Cellulose Nanocrystal–Magnetic Iron Oxide Nanocomposite for Removal of Chromium (VI) from Aqua Media. Engineering Proceedings, 67(1), 5. https://doi.org/10.3390/engproc2024067005