Carbon Capture and Utilization through Biofixation: A Techno-Economic Analysis of a Natural Gas-Fired Power Plant †
Abstract
:1. Introduction
2. Methodology
- For algal CO2 fixation, flue gas with a CO2 concentration of 2–5 vol% is enough.
- Several studies indicate that 1 kg of microalgal biomass can fix roughly 1.80 to 2 kg of CO2.
- Raceway ponds capture CO2 at an efficiency of around 10%, significantly less than greenhouses (35%) and photobioreactors (up to 75%).
- Chlorella vulgaris microalgae culture is considered to have a CO2 fixation rate of between 3.4 and 6.2 g/L/day (average 4.8 g/L/day).
- Trace elements like NOX in flue gas can act as nutrients for microalgae, eliminating the need for scrubbing.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NGCC | Natural gas combined cycle |
NDC | Nationally determined contribution |
GDP | Gross domestic product |
NPV | Net present value |
CCSU | Carbon capture, storage, and utilization |
CCU | Carbon capture and utilization |
RES | Renewable energy sources |
PCC | Post-combustion carbon capture |
CAPEX | Capital expenditure |
OPEX | Operational expenditure |
References
- Papadis, E.; Tsatsaronis, G. Challenges in the Decarbonization of the Energy Sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Turakulov, Z.; Kamolov, A.; Norkobilov, A.; Variny, M.; Fallanza, M. Assessment of CO2 Emission and Decarbonization Measures in Uzbekistan. Int. J. Environ. Res. 2024, 18, 28. [Google Scholar] [CrossRef]
- NDC Status. The Republic of Uzbekistan. Available online: https://climatepromise.undp.org/what-we-do/where-we-work/uzbekistan (accessed on 3 June 2024).
- Kamolov, A.; Turakulov, Z.; Norkobilov, A.; Variny, M.; Fallanza, M. Evaluation of Potential Carbon Dioxide Utilization Pathways in Uzbekistan. Eng. Proc. 2023, 56, 194. [Google Scholar] [CrossRef]
- Kamolov, A.; Turakulov, Z.; Norkobilov, A.; Variny, M.; Fallanza, M. Decarbonization Challenges and Opportunities of Power Sector in Uzbekistan: A Simulation of Turakurgan Natural Gas-Fired Combined Cycle Power Plant with Exhaust Gas Recirculation. Eng. Proc. 2023, 37, 24. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-Combustion CO2 Capture with Chemical Absorption: A State-of-the-Art Review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef]
- Ghorbani, A.; Rahimpour, H.R.; Ghasemi, Y.; Zoughi, S.; Rahimpour, M.R. A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran. Renew. Sustain. Energy Rev. 2014, 35, 73–100. [Google Scholar] [CrossRef]
- Turakulov, Z.; Kamolov, A.; Norkobilov, A.; Variny, M.; Díaz-Sainz, G.; Gómez-Coma, L.; Fallanza, M. Assessing Various CO2 Utilization Technologies: A Brief Comparative Review. J. Chem. Technol. Biotechnol. 2024, 99, 1291–1307. [Google Scholar] [CrossRef]
- Scapini, T.; Woiciechowski, A.L.; Manzoki, M.C.; Molina-Aulestia, D.T.; Martinez-Burgos, W.J.; Fanka, L.S.; Duda, L.J.; Vale, A.D.S.; De Carvalho, J.C.; Soccol, C.R. Microalgae-Mediated Biofixation as an Innovative Technology for Flue Gases towards Carbon Neutrality: A Comprehensive Review. J. Environ. Manag. 2024, 363, 121329. [Google Scholar] [CrossRef] [PubMed]
- Sen, R.; Mukherjee, S. Recent Advances in Microalgal Carbon Capture and Utilization (Bio-CCU) Process Vis-à-Vis Conventional Carbon Capture and Storage (CCS) Technologies. Crit. Rev. Environ. Sci. Technol. 2024, 1–26. [Google Scholar] [CrossRef]
- Bucci, P.; Marcos Montero, E.J.; García-Depraect, O.; Zaritzky, N.; Caravelli, A.; Muñoz, R. Assessment of the Performance of a Symbiotic Microalgal-Bacterial Granular Sludge Reactor for the Removal of Nitrogen and Organic Carbon from Dairy Wastewater. Chemosphere 2024, 351, 141250. [Google Scholar] [CrossRef] [PubMed]
- Gharanjik, M.A.; Najafpour-Darzi, G.; Jahanshahi, M.; Mohammadi, M. Potential CO2 Biofixation by Microalgae Strains for Industrial Application. Int. J. Environ. Sci. Technol. 2024, 21, 7479–7490. [Google Scholar] [CrossRef]
- Oliveira, G.M.; Caetano, N.; Mata, T.M.; Martins, A.A. Biofixation of CO2 Emissions from Natural Gas Combined Cycle Power Plant. Energy Rep. 2020, 6, 140–146. [Google Scholar] [CrossRef]
- Llamas, B.; Suárez-Rodríguez, M.C.; González-López, C.V.; Mora, P.; Acién, F.G. Techno-Economic Analysis of Microalgae Related Processes for CO2 Bio-Fixation. Algal Res. 2021, 57, 102339. [Google Scholar] [CrossRef]
- Acién, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production Cost of a Real Microalgae Production Plant and Strategies to Reduce It. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Hanifzadeh, M.M.; Sarrafzadeh, M.H.; Tavakoli, O. Carbon Dioxide Biofixation and Biomass Production from Flue Gas of Power Plant Using Microalgae. In Proceedings of the 2012 Second Iranian Conference on Renewable Energy and Distributed Generation, Tehran, Iran, 6–8 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 61–64. [Google Scholar]
- Singh, H.M.; Kothari, R.; Gupta, R.; Tyagi, V.V. Bio-Fixation of Flue Gas from Thermal Power Plants with Algal Biomass: Overview and Research Perspectives. J. Environ. Manag. 2019, 245, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Popp, J.; Pető, K.; Szőke, I.; Harangi-Rákos, M.; Gabnai, Z. The Significance of Forests and Algae in CO2 Balance: A Hungarian Case Study. Sustainability 2017, 9, 857. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Chang, J.-S.; Miao, X. A Two-Stage Culture Strategy for Scenedesmus Sp. FSP3 for CO2 Fixation and the Simultaneous Production of Lutein under Light and Salt Stress. Molecules 2022, 27, 7497. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, D.; Zhong, Y.; Daiek, C.; Liao, W.; Morgan, R.; Clary, W.; Liu, Y. Microalgae Cultivation for Carbon Dioxide Sequestration and Protein Production Using a High-Efficiency Photobioreactor System. Algal Res. 2017, 25, 413–420. [Google Scholar] [CrossRef]
- Kun.uz, Tariffs for Electricity and Gas May Increase from May 1. Available online: https://kun.uz/en/news/2024/04/16/tariffs-for-electricity-and-gas-may-increase-from-may-1 (accessed on 10 July 2024).
Parameters | Compositions (mol%) | ||
---|---|---|---|
Flue gas exit mass flowrate (kg/s) | 707 | N2 | 0.76 |
O2 | 0.12 | ||
Flue gas exit temperature (°C) | 104 | CO2 | 0.04 |
H2O | 0.077 | ||
Flue gas exit pressure (kPa) | 98.1 | Argon (Ar) | 0.002 |
Nitric oxide (NOx) | 0.001 |
CO2 Biofixation through Microalgae Cultivation | Units | Dimensions |
---|---|---|
Total volume of photobioreactors | m3 | 946,583 |
Photobioreactor’s individual volume | m3 | 320 |
Number of photobioreactors | - | 2958 |
Length of each photobioreactor | m | 1629 |
Diameter of each photobioreactor | m | 0.5 |
Direct contact cooler volume | m3 | 1700 |
Mixing tank volume for each photobioreactor | m3 | 27 |
Description | Costs | |
---|---|---|
CAPEX | Annual interest rate (%) | 12 |
Plant economic life (years) | 15 | |
Each photobioreactor cost (EUR/m3) | 2000 | |
Other supportive instruments and land cost | 20% of CAPEX | |
OPEX | Fixed OPEX including control and maintenance, labor, etc. | 3% of total CAPEX |
Water cost (EUR/m3) | ≈Pumping cost | |
Electricity cost (EUR/kWh) | 0.08 | |
Each batch process duration (days) | 10 | |
Number of working days in a year | 300 | |
Revenue | Algal biomass cost unprocessed (EUR/t) | 500–1000 (average of 750) |
Oxygen rich gas cost | Not included | |
CO2 allowance and CO2 tax and CO2 cost (EUR/t of CO2) | 0–100 |
Main indicator | Results | |
---|---|---|
Total investment cost | Photobioreactor cost (million EUR) | 1514.533 |
Infrastructure to support PBR tube vessels (million EUR) | 32.522 | |
Storage tanks for water/culture medium recycling (million EUR) | 51.453 | |
Centrifuge for microalgae biomass harvesting (million EUR) | 7.863 | |
Combined oxygen and temperature control in PBR (million EUR) | 8.398 | |
Microfiltration/sanitization system for freshwater and culture medium (million EUR) | 20.505 | |
Direct contact cooler cost (million EUR) | 4.257 | |
Blower for flue gas pressure increase (million EUR) | 3.635 | |
Total CAPEX (million EUR) | 1893.167 | |
Annualized CAPEX (million EUR) | 277.963 | |
Fixed OPEX | Labor cost (million EUR/year) | 56.795 |
Equipment and maintenance (million EUR/year) | ||
Insurance and others (million EUR/year) | ||
Variable OPEX | Water cost (million EUR/year) | 4.724 |
Electricity cost (million EUR/year) | ||
Culture media (nutrients) cost (million EUR/year) | 16.603 | |
Total OPEX (million EUR/year) | 21.327 | |
Total revenue | Biomass produced (Mton/year) | 425.962 |
CO2 avoided (Mton/year) | 823.527 | |
Biomass revenue cost (million EUR/year) | 319.472 | |
Carbon allowance cost (million EUR/year) | 41.176 | |
Total annual revenue (million EUR/year) | 360.648 | |
Total annualized cost (million EUR) | 356.084 | |
Net Present Value (million EUR) | 31.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamolov, A.; Turakulov, Z.; Avezov, T.; Norkobilov, A.; Variny, M.; Fallanza, M. Carbon Capture and Utilization through Biofixation: A Techno-Economic Analysis of a Natural Gas-Fired Power Plant. Eng. Proc. 2024, 67, 55. https://doi.org/10.3390/engproc2024067055
Kamolov A, Turakulov Z, Avezov T, Norkobilov A, Variny M, Fallanza M. Carbon Capture and Utilization through Biofixation: A Techno-Economic Analysis of a Natural Gas-Fired Power Plant. Engineering Proceedings. 2024; 67(1):55. https://doi.org/10.3390/engproc2024067055
Chicago/Turabian StyleKamolov, Azizbek, Zafar Turakulov, Toshtemir Avezov, Adham Norkobilov, Miroslav Variny, and Marcos Fallanza. 2024. "Carbon Capture and Utilization through Biofixation: A Techno-Economic Analysis of a Natural Gas-Fired Power Plant" Engineering Proceedings 67, no. 1: 55. https://doi.org/10.3390/engproc2024067055
APA StyleKamolov, A., Turakulov, Z., Avezov, T., Norkobilov, A., Variny, M., & Fallanza, M. (2024). Carbon Capture and Utilization through Biofixation: A Techno-Economic Analysis of a Natural Gas-Fired Power Plant. Engineering Proceedings, 67(1), 55. https://doi.org/10.3390/engproc2024067055