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Abstract: Estimating production in cereal fields allows farmers to obtain information on improving
management in their following campaigns and avoiding losses. The main objective of this work
was to estimate grain production in cereals (wheat and barley) in the 2019 and 2020 campaigns in
three provinces of Central Spain. The model was based on the prediction of the maximum values of
the Sentinel-2 Normalized Difference Vegetation Index (NDVI) time series with ARIMA and multiple
linear regression models. The highest correlation was found between grain yield and the variables’
five-month cumulative rainfall and maximum greenness (NDVImax).

Keywords: Sentinel-2; cereals; remote sensing; NDVI; Box–Jenkins

1. Introduction

Agriculture in Spain is an important economic sector, with a usable agricultural area of
approximately 17 million hectares, where over 5.8 million hectares are used for grain crops
like wheat and barley [1]. In Spain, one of the most important agricultural areas is Castilla
y León (CyL), where 3.5 million hectares are sown with a predominance of rainfed arable
crops such as wheat, oats, rye, and other cereals. Castilla y León has 2.04 million hectares
of cereals, 45.4% of which are in the provinces to be analyzed. This area is divided into the
following: (1) Burgos with 19.4%, (2) Palencia with 14.9%, and (3) Soria with 11.1% [2].

Due to the importance of agriculture and the variability of the Mediterranean climate,
predicting crop yields is essential for optimizing farming practices and improving the
financial management of agri-food farms. Being able to analyze predicted yields is essential
for both policy makers and farmers’ organizations to develop and implement appropri-
ate management policies [3]. Access to a large amount of data with sufficient temporal
resolution is therefore essential for the development of effective predictive models.

Remote sensing data obtained from satellites such as Sentinel-2 of the European Space
Agency (ESA) are very useful for monitoring due to their high resolution, such as spatial
resolution (10 m) and temporal (5 days). With these images, different vegetation indices
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such as the Normalized Difference Vegetation Index (NDVI) can be calculated, allowing us
to monitor and understand the health of vegetation.

For this work, the autoregressive integrated moving average (ARIMA) models intro-
duced in the 1970s by Box and Jenkins [4] were used, in which time series are modeled as a
stationary stochastic process.

The main objective is to predict the maximum NDVI that crops (wheat and barley) can
reach in the study area and, through this maximum NDVI, estimate cereal production.

2. Materials and Methods
2.1. Study Region

The study area (Figure 1) comprises the provinces of Burgos, Palencia, and Soria, lo-
cated in the autonomous community of “Castilla y León” in the northern part of the central
plateau in the Iberian Peninsula. The high orographic diversity results in considerable
variations in terms of climate and landscape.
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Figure 1. Study area: different tiles from Sentinel-2 Burgos (30TVM), Palencia (30TUN), and Soria
(30TWM).

Palencia and Burgos are the most northern provinces in this study, bounding in the
north with the Cantabrian Mountain range. Burgos is also delimited in the northeast by the
Sierra de la Demanda, which acts as a boundary between this province and La Rioja and
Álava. In the north of Burgos, we can also find the Ebro valley. In the central and southern
areas of these provinces, we find a wide plain where we can find the largest number of
cultivated hectares in these provinces. In the middle area of Burgos, we find the Duero
valley.

Soria is located to the southeast of Burgos and is the southernmost province in the
study. In the northern area, we find the Iberian Mountain range, where the Duero River
rises, which flows southwards until it reaches the middle area of the province and from
there begins to flow westwards.

Crops are mainly distributed among two types of climates, according to the Köppen
classification [5]. The Csb is defined by seasonal rainfall and warm summer temperatures
with dry summers; it is in Palencia and the southern areas of Burgos and Soria. Meanwhile,
Cfb is a temperate climate without dry season, which is located to the north of Burgos and
east of Soria. Figure 2 shows the climodiagrams of a representative area for each province
in our study area to understand the rainy seasons of each province.
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2.2. Data Source and Processing
2.2.1. Meteorological Data

Monthly precipitation data for the period 2017–2021 provided by the State Meteoro-
logical Agency (AEMET) were used to estimate the predictive model. The accumulated
rainfall of the last five months prior to the NDVImax was used. Rainfall at critical moments
within the crop phenological cycle is essential for the crop to obtain its maximum yield [6].

2.2.2. Data Yield of Wheat and Barley

Wheat and barley production information, used for modeling and validation, was
obtained from the “Encuesta de Superficies y Rendimientos de Cultivos” (ESYRCE) in
the period 2017–2022 [7]. This information was collected by specialists along the whole
National Territory between May and September. Only the years 2019 and 2020 were
analyzed due to a lack of information on cereal yields. For the analysis, 20 plots were used
for 2019 and 21 were used for 2020. Table 1 shows the total area data and annual cereal
production in each province.

Table 1. Surface and production of cereals in Castilla y León.

Province Area (ha) Production (Tn)

Burgos 396,635 1,885,122
Palencia 304,111 1,268,512

Soria 225,639 887,833
Total 2,041,440 9,213,250

2.2.3. Sentinel-2 Data

Sentinel is a multi-satellite project developed by the ESA (European Space Agency) in
the framework of the Copernicus Program. The Sentinel-2 MSI system includes two satel-
lites with optical sensors that have been acquiring land surface information every 10 days
by Sentinel-2A since late 2015 and every 5 days after the launch of Sentinel-2B in 2017.

The availability of a high temporal resolution combined with the high spatial resolution
(10, 20, and 60 m) is excellent for the development of indicators to analyze the vegetation
functioning in different land covers. This is especially interesting in cases where spatial
variability is high due to different crops or environmental gradients.

The Sentinel-2 images (10 m) from the period 2017–2023 and the tiles 30TVM (Bur-
gos), 30TUN (Palencia), and 30TWM (Soria) were downloaded from https://dataspace.
copernicus.eu/ (accessed on 30 October 2023).

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
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2.3. Methodology

The methodology followed in this study is shown in Figure 3, and each of the steps
are explained in this section.
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2.4. Research Methods
2.4.1. Calculation of NDVI and Compilation of Time Series

The Normalized Difference Vegetation Index (NDVI) [8] is a measure used in remote
sensing to assess the health and density of vegetation. The NDVI is, worldwide, the most
widely used and the most comprehensive source of information for monitoring vegetation.
The NDVI value (Equation (1)), calculated for each selected pixel of the image, takes values
between −1 and 1 for no vegetation and dense vegetation, respectively.

NDVI = (NIR − RED)/(NIR + RED), (1)

where:

- RNIR: reflectance in the near-infrared band (NIR) (band b8 in Sentinel-2);
- RRED: reflectance in the red band (RED) (band b4 in Sentinel-2).

To build the time series, the images of the NDVI were ordered chronologically and
compiled (stack). After this procedure, the stack of each tile was filtered with the Whittaker
filter [9] to reduce noise (i.e., clouds, atmospheric conditions, sensor failures).

2.4.2. NDVI Time Series Modeling

NDVI time series dynamics reflect vegetation conditions influenced by climate and
other factors, resulting in significant seasonality with an annual pattern repeated every
73 observations (temporal resolution 5 days) based on the frequency of Sentinel-2 data; this
seasonality is the main reason for non-stationarity in the NDVI time series. Figure 4 shows
the procedure of the Box and Jenkins methodology implemented to model and forecast the
filtered NDVI time series.
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I. Identification.

In this step, the dynamics of the NDVI time series were analyzed, and their character-
istic components, seasonality, cycles, trends, and structural changes were identified. The
regular and seasonal autoregressive and moving-average parameters were determined
based on the identification outcomes to effectively capture the dynamics of the time series.

II. Estimation.

Nonlinear least squares methods were used to estimate the models selected in the
previous stage, and the significance of the model parameters was evaluated by Student’s t
and F tests.

III. Validation.

The adequacy of the estimated models was assessed using the autocorrelation in the
model residuals through the Ljung–Box Q statistic [10]. If the test reveals that a substantial
amount of residual autocorrelation persists in the estimated models, the model is considered
invalid, and returning to the Identification step is necessary.

IV. Forecasting.

The observed NDVI time series values were predicted using the validated ARIMA
models.

V. Evaluation.

The predictive capacity of the models was assessed using Theil’s U inequality coeffi-
cient [11]. This coefficient, ranging from 0 to 1, measures the prediction accuracy regardless
of measurement scale. A perfect prediction yields U = 0, while U = 1 indicates a naive pre-
diction (Equation (2)). Theil’s U also aids in identifying sources of prediction error, divided
into three proportions: bias (UB), variance (UV), and covariance (UC). A desirable predic-
tion features bias and variance proportions close to zero, with most error concentrated in
covariance. The sum of the 3 proportions is equal to 1.

U =

[
∑n

i=1(Fi − Oi)
2
] 1

2

[
∑n

i=1(Oi)
2
] 1

2
(2)

where:
U = Theil’s U inequality coefficient;
Fi = forecasted variable;
Oi = observed variable;
n = number of observations.

2.4.3. Multiple Linear Regression Model

The multiple linear regression model (Equation (3)) is used to model the relationship
between multiple independent variables and a dependent variable. The model assumes a
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linear relationship between the predictors and the response variable, where the effect of
each predictor on the response is additive and constant.

Yj = β0 + β1X1j + β2X2j + . . . + βkXkj + uj (3)

where Y is the dependent variable, X1, X2, . . ., Xk are the independent variables, β0 is the
intercept, β1, β2, . . ., βk are the coefficients representing the effect of each predictor, and u
is the error term. The independent variables are the NDVImax value of each plot and the
cumulative rainfall of the five months before NDVImax.

Statistical analyses were conducted using SAS 9.2, while image processing was per-
formed using ENVI 4.7.

3. Results

Figure 5 shows the observed NDVI time series and the time series predicted with the
ARIMA model, emphasizing the maximum values of the NDVI for the campaigns studied.
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Figure 5. Time series of observed and predicted NDVI, with NDVImax for 2019 and 2020.

Table 2 shows the accuracy of the nine plot model forecasts using Theil’s U inequality
coefficient, which is broken down into three proportions: (1) the bias proportion (UB),
(2) the variance ratio (UV), and (3) the proportion of covariance (UC). In all cases, Theil’s
U inequality coefficient was near to zero, showing a good model predictive capacity. In
addition, most of the error was concentrated in the proportion of covariance, indicating the
good accuracy of the forecasts.

Table 2. Accuracy of the model forecasts for nine time series using Theil’s U.

Province Plot U Theil UB UV UC

Burgos
BUR_P1 0.00882 0.00162 0.00012 0.99826
BUR_P2 0.01705 0.00194 0.00020 0.99786
BUR_P3 0.01784 0.00294 0.00059 0.99647

Palencia
PAL_P1 0.03884 0.00199 0.00158 0.99642
PAL_P2 0.03607 0.00208 0.00149 0.99644
PAL_P3 0.04029 0.00201 0.00136 0.99663

Soria
SOR_P1 0.00425 0.00150 0.00001 0.99850
SOR_P2 0.01255 0.00163 0.00011 0.99826
SOR_P3 0.00780 0.00101 0.00003 0.99896

Figure 6 shows the scatterplots of the observed and predicted yield obtained after
applying the multiple linear regression models for the two scenarios: (1) observed NDVImax
and (2) predicted NDVImax for the three provinces and different years (2019 and 2020).
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Figure 6. The observed and estimated yields (kg/ha) for 2019 in the provinces of Burgos (A,D),
Palencia (B,E) and Soria (C,F) compared to the obtained and predicted NDVI also for 2020 in the
provinces of: Burgos (G,J), Palencia (H,K) and Soria (I,L). The estimated yields were obtained from
the multiple linear regression.

4. Discussion and Conclusions

Theil’s U index showed a good fit of the predicted values to the original time series
despite the shortness of the Sentinel-2 time series compared to others such as Landsat or
MODIS. The maximum NDVI estimated from the predicted NDVI time series showed
similar values to those estimated from the original time series.

The multiple linear regression models demonstrate a strong correlation between the
predicted maximum NDVI and climatic variables. Palencia showed a higher relationship,
with R2 = 0.94 and R2 = 0.91 in 2019 and 2020, respectively, followed by Soria with lower
correlation in both years (R2 = 0.74 and R2 = 0.87). Iranzo et al. [12], using Sentinel-2
NDVI values at specific dates and multiple linear regression models, found a significant
correlation between yield and the NDVI and precipitation. On the other hand, Burgos
showed significantly low values (Figure 6g) in 2020 (R2 = 0.18). This may be related to the
high variability of yield values among plots observed in this province, which may have a
relevant influence on the models’ results.

This work examined the capability of using Sentinel-2 NDVI time series to estimate
cereal grain production in three provinces of Spain with different climatic conditions
and high spatial resolution. The multiple linear regression models demonstrated a high
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correlation of accumulated precipitation and maximum greenness (NDVImax) of the crop
cycle with grain yield. The results obtained demonstrate that Sentinel-2 is a good tool to
obtain accurate yield estimates; this is partially due to its high spatial resolution, which
makes it possible to evaluate the temporal dynamics of pure pixels from each specific crop.
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