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Abstract: This paper presents a novel multimodal recurrent model for time series forecasting lever-
aging LSTM architecture, with a focus on production forecasting in oil wells equipped with rod lift
systems. The model is specifically designed to handle time series data with diverse types, incorpo-
rating both images and numerical data at each time step. This capability enables a comprehensive
analysis over specified temporal windows. The architecture consists of distinct submodels tailored to
process different data modalities. These submodels generate a unified concatenated feature vector,
providing a holistic representation of the well’s operational status. This representation is further re-
fined through a dense layer to facilitate non-linear transformation and integration. Temporal analysis
forms the core of the model’s functionality, facilitated by a Long Short-Term Memory (LSTM) layer,
which excels at capturing long-range dependencies in the data. Additionally, a fully connected layer
with linear activation output enables one-shot multi-step forecasting, which is necessary because the
input and output have different modalities. Experimental results show that the proposed multimodal
model achieved the best performance in the studied cases, with a Mean Absolute Percentage Error
(MAPE) of 8.2%, outperforming univariate and multivariate deep learning-based models, as well as
ARIMA implementations, which yielded results with a MAPE greater than 9%.

Keywords: multimodal time series forecasting; oil production; machine learning; deep learning;
neural networks

1. Introduction

In an era defined by the proliferation of data from diverse sources and modalities, the
predictive power of time series analysis has become indispensable across numerous indus-
tries. This study seeks to advance the capabilities of this field, particularly in the domain of
multimodal time series forecasting. Traditionally, time series forecasting has focused on
univariate and multivariate data; however, our research introduces an innovative approach
by harnessing multimodal neural network models.

The novelty of our work lies in the development of a multimodal encoder architecture
tailored to address the complexities of multimodal temporal phenomena. At each time
point, our architecture integrates information from various modalities, such as numerical
data and images. By doing so, it not only captures the individual behaviors of each
data source but also elucidates the intricate inter-relationships among them. This holistic
approach enables our model to achieve a deeper understanding of the phenomenon under
study, recognizing that the whole is greater than the sum of its parts.

Our dataset revolves around the production dynamics of oil wells employing rod lift
systems as an artificial lift method. This dataset encompasses multimodal information,
including numerical data, images, and text, captured at each time step.
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In our forecasting experiments, multimodal models featuring LSTM layers demon-
strate superior performance over non-multimodal neural network models relying solely
on numerical data, yielding a mean absolute percentage error of 8.2%. However, we note
instances where the ARIMA model outperforms the multimodal approach, particularly
in cases where the production time series exhibits values proximate to the mean with
low dispersion.

Furthermore, we explore alternative model configurations by substituting the LSTM
recurrent layer with a transformer encoder layer. However, given the nature of the data and
the limited number of training examples, this specific architecture utilizing a transformer
encoder fails to produce satisfactory results for this use case. This underscores the necessity
of further research to enhance the performance of transformer-based architectures in the
context of multimodal time series analysis.

2. Related Work

This section offers a comprehensive review of current state-of-the-art methodolo-
gies in time series forecasting, focusing on both traditional models and advanced deep
learning approaches.

2.1. Traditional Models

Regression-Based Models: Commonly used methods such as Support Vector Machine
(SVM), Linear Regression (LR), and Random Forest (RF) were initially developed for tabular
data but have been adapted for time series forecasting. These models learn a mapping
function from extracted features of time series, although they may overlook the critical
temporal dimension inherent in such data [1].

Functional Linear Models (FLMs): FLMs extend multiple linear regression to func-
tional data by employing basis functions such as Functional Principal Components (FPCs)
or B-spline functions, addressing the continuous nature of time series [2].

Interval-Based Algorithms: Approaches like time series forest extract features from
specific intervals of the time series, often outperforming models utilizing the entire series.

Dictionary-Based Algorithms: These methods build a “dictionary” of frequent patterns
in time series. Some examples include Bag of Patterns (BOP) and Symbolic Aggregation
Approximation Vector Space (SAXVSM) [3].

2.2. Deep Learning-Based Models

Residual Networks (ResNet): Particularly influential in univariate time series anal-
ysis, ResNet features an innovative structure with residual blocks that mitigate gradient
vanishing problems, making it highly effective [4].

Fully Convolutional Neural Networks (FCN): Composed solely of convolutional
layers, FCN is well-suited for regression and classification tasks in time series analysis.

Inception-Based Networks: These networks represent a significant advancement in
deep learning for time series, incorporating funnel layers and filters of varying lengths,
along with MaxPooling operations [5].

Transformer-Based Architectures: Recent studies have introduced architectures based
on transformers, achieving better results than Multi-Layer Perceptron (MLP) models for
certain data types [6].

2.3. Multimodal Approaches

While traditional models primarily handle univariate or multivariate numerical data,
models like CNN-LSTM are utilized for time series of images. However, few state-of-the-art
models effectively handle truly multimodal data.

One approach integrates recurrent and convolutional networks to merge time se-
ries and image data using a CNN-BiLSTM model. Another significant work employs
a two-stage model with a multimodal autoencoder followed by an LSTM network for
forecasting [7].
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3. Data Description

This section offers a detailed description of the dataset used in this study, encompass-
ing monthly measurements of various variables associated with 200 oil wells in a Colombian
oil field. Each time series (one for each well) has between 100 and 300 observations of
numerical variables and images related to the behavior of the system.

3.1. Numerical Data

Monthly measurements are recorded for 47 numerical variables related to produc-
tion and the state of the artificial lift system for each well. These variables include total
production (of all fluids), oil production, and water and solids contents, among others.

However, not all variables contribute equally to the production phenomenon, and cor-
relations exist among them. To address this, the following two approaches were employed
for dimensionality reduction, resulting in two distinct datasets: expert judgment-based vari-
able selection and dimensionality reduction using Principal Component Analysis (PCA).

For expert judgment-based selection, the following variables were chosen:

• Oil production;
• Total production;
• Water and solids contents in oil;
• Liquid level above the pump;
• Pump filling percentage;
• Top hole pressure;
• Casing pressure;
• Salinity;
• Maximum load in the middle of the polished rod cycle;
• Peak load in the middle of the polished rod cycle;
• Maximum load of the polished rod;
• Peak load on the polished rod;
• Pump displacement;
• Pump volumetric fillage (%);
• Unaccounted friction.

Alternatively, employing principal component analysis (PCA) reduced the dimension-
ality to 30 variables, retaining 94.9% of the variance.

For further preprocessing, all selected numerical variables were scaled using a stan-
dard scaler, transforming each variable to have a mean of 0 and a standard deviation of 1,
promoting consistency and facilitating model convergence during training.

3.2. Dynacard Images

Dynacards, also known as dynamometer cards, are visual representations of the load
on the pumping unit over a pump cycle. These images are collected monthly and provide
valuable insights into the mechanical state of rod lift systems. However, it is important to
note that unlike numerical data, dynacard images do not provide direct numerical values of
the variables. Instead, they offer a graphical depiction of the load dynamics throughout the
pump cycle. Therefore, in our modeling approach, we treat dynacard images as valuable
visual data, aiming to train the model to understand the patterns and deformations within
these images rather than focusing on specific numerical values. Example Dynacard images
are depicted on the left side of Figure 1.
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Figure 1. Representative images distributed over time. Dynacard image of 120 × 100 pixels on the
left and valve test image of 120 × 200 pixels on the right. Each image source represents a different
modality of the measured data.

3.3. Valve Test Images

Similarly, monthly-collected valve test images offer crucial insights into the behavior
of the valve throughout a pump cycle. These images help assess valve performance and
system efficiency. As with dynacard images, valve test images do not directly provide
numerical data; rather, they visually illustrate the load behavior over time. Therefore, in
our modeling framework, we leverage these images as informative visual data, training
the model to interpret and understand the patterns and deformations within the images
rather than relying on specific numerical values. Example valve test images are depicted
on the left side of Figure 1.

3.4. Dataset Structure

The structure of the dataset is determined by the nature of the data and the specific
requirements of the business context. Given the limited number of measurements for each
independent time series, a structured dataset is essential for enabling the model to learn
the general behavior of the series and predict the future behavior of each well.

To address the prediction problem, where the input and output do not share the same
dimensionality, a model architecture is designed with an input consisting of a certain
number of time steps from the past to make a one-shot multi-step prediction. After
careful consideration, a window size of 36 steps (equivalent to 3 years) from the past
was chosen to predict the next 24 steps (equivalent to 2 years). This decision was made
based on an understanding of the data dynamics and the specific forecasting needs of the
business context.

4. Baseline Models

Various baseline models were developed to compare results with the proposed multi-
modal model. The following models were developed:

• Auto_ARIMA: An ARIMA model for each time series was created using the auto-arima
package from pmdarima [8].

• ARIMA model with the lowest AIC: The ARIMA model with the lowest Akaike
Information Criterion (AIC) values according to the implementation by Bello-Angulo
et al. [9].

• Univariate model: LSTM model that takes only the production window as input in
making predictions. This model was trained on all time series, and its performance
was assessed with and without fine tuning on the series to predict.

• Multivariate variable model: LSTM model that takes the window of all numerical
variables as input in making predictions. One model was developed for variables
selected by expert judgment and another for variables obtained with PCA. This model
was trained on all time series, and its performance was assessed with and without fine
tuning on the series to be predicted.
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5. Multimodal Model Architecture

Our multimodal time series forecasting model is designed to receive a multimodal in-
put at each time step and predict the specified number of steps. The architecture comprises
several crucial components customized to handle and integrate various data modalities
before making predictions. A schematic representation is depicted in Figure 2.

Figure 2. Schematic representation of the multimodal time series forecasting model, demonstrating
the concatenation of submodels inside the time-distributed layer corresponding to each modality in
the dataset. In this specific case, two modalities are utilized, namely images and numerical data.

5.1. Submodel Architectures for Heterogeneous Data

Numerical data submodel: For structured time series data, such as production test
and sensor data, we employed a fully connected layer with a sigmoid activation function
consisting of four units.

Dynacard and Valve Test Image Data Submodel: Convolutional Neural Networks
(CNNs) were utilized for the image data from dynacards and valve tests. Each CNN com-
prises a series of two convolutional layers with ReLU activations paired with max pooling
followed by a flatten and a dense layer for feature extraction. These CNNs transform
the raw image pixels into a compact and informative representation of visual features.
The submodel has 112 trainable parameters for dynacards and 120 for valve tests. Each
submodel outputs a unidimensional vector of four positions.

5.2. Integration of Modalities

To amalgamate insights from all modalities, we concatenated the outputs of submodels
into a unified feature vector, offering a holistic snapshot of the well’s operational status at
each time step. The length of this vector was fine-tuned via hyperparameter optimization,
where various sizes are tested through a grid search to identify the most informative fusion
of features from each modality. Following this optimization process, the concatenated
output was fed through a dense layer. For this specific use case, the dense layer comprises
eight units, a pivotal component in our model’s architecture. This dense layer plays a
critical role in facilitating further non-linear transformation and integration of features
from each modality. Its significance lies in empowering the model to discern intricate
patterns and relationships among the modalities, thereby enhancing its predictive capacity
for future production outcomes.
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5.3. Temporal Analysis

The core temporal analysis was conducted via a long short-term memory (LSTM)
layer, which was specifically designed for the processing of sequential data. The unified
feature vector for each time step was fed into the LSTM, allowing it to learn and retain
information across the entire temporal window, employing a time-distributed Layer as
shown in Figure 3.

Figure 3. Time-distributed framework used to feed the submodels for each time step, then pass the
output to the LSTM layers.

Moreover, we explored alternative configurations by substituting the LSTM recurrent
layer with a transformer encoder layer. However, due to the nature of the data and the
limited number of training examples, this specific architecture based on a transformer
encoder did not yield satisfactory results for this use case.

5.4. Prediction

The prediction phase involves the decoder, which directly consists of a dense layer
output with a linear activation function. The decoder features as many units as there are
steps to predict, aligning with the dimensional requirements of the forecasting task. Since
the dependent and independent variables exhibit a dimensional mismatch, rendering the
use of a sequence-to-sequence model unfeasible, a multiple-output layer was employed.
This configuration allows for the simultaneous prediction of multiple time steps in a
single iteration.

In summary, the proposed model architecture offers a cohesive structure capable of
capturing the complex multimodal interactions within time series data, specifically for oil
production forecasting in this case.

6. Model Training

For model training, a computer with dual Xeon E2625-V3 processors, 40 GB of RAM,
and an Nvidia 980 TI graphics card with 6 GB of VRAM was utilized. Details regarding the
number of trainable parameters, the training time for each model, and the final training
MSE for each model can be found in Table 1. The models were trained using a dataset
consisting of 4322 training examples. Notably, the training data indicate that the transformer
architecture exhibits slightly faster training times, which may prove advantageous when
scaling up to larger datasets. However, it is worth mentioning that the LSTM architecture
achieved superior results on the training data.
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Table 1. Training data for the deep learning models.

Model Trainable Params Train Time (s) MSE

Multimodal LSTM 8872 1858 0.34
Multimodal
LSTM-PCA 8932 1899 0.32

Multimodal
Transformer 8072 1832 0.39

Multimodal
Transformer-PCA 8132 1758 0.36

7. Results

Table 2 displays the results of the tests conducted across 10 oil wells. These results
are quantified in terms of MAPE (mean absolute percentage error), as shown in Equa-
tion (1). The findings indicate that the multimodal model exhibited the most favorable
performance, with a mean absolute percentage error of 8.2%. Nevertheless, it is noteworthy
that the ARIMA model with the lowest AIC outperformed the multimodal model in some
specific cases.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (1)

Table 2. MAPE results of production forecasting for 10 oil wells for each model.

MAPE for Each Oil Well (%)

Model W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Avg.
**

Std.
Dev

ARIMA with lowest AIC 6.4 7.1 7.9 6.2 2.5 15.9 17.4 9.2 12.6 5.0 9.0 4.8
Auto ARIMA 12.8 5.2 7.4 18.4 2.3 7.5 17.4 18.5 17.2 5.7 11.2 6.3

LSTM model for only one well 78.6 22.3 26.5 45.3 59.3 11.2 41.4 39.9 46.6 7.6 37.9 21.8

Multimodal LSTM 6.2 2.7 8.1 6.6 5.3 9.3 13.4 5.1 18.0 7.8 8.2 4.5
Multimodal LSTM-Fine-T *. 12.4 4.3 7.9 5.0 8.8 3.9 17.4 5.7 19.4 8.8 9.4 5.4

Multimodal LSTM-PCA 5.6 3.3 13.0 6.0 24.4 7.6 17.7 8.6 21.2 6.6 11.4 7.3
Multimodal LSTM-PCA-Fine-T *. 10.7 15.7 6.1 10.6 12.3 28.5 18.3 8.2 20.5 6.4 13.7 7.1

Multimodal Transformer 18.2 19.2 11.0 16.0 17.7 7.4 25.9 7.5 41.1 12.4 17.6 10.0
Multimodal Transformer-Fine-T *. 30.4 24.8 8.5 16.2 17.7 11.4 34.1 7.7 39.1 15.2 20.5 11.0

Multimodal Transformer-PCA 17.1 22.3 9.3 8.7 31.4 9.4 18.5 9.3 32.2 4.6 16.3 9.8
Multimodal Transformer-PCA-Fine-T*. 13.6 24.1 12.3 19.3 41.1 8.4 19.7 11.4 23.0 5.8 17.9 10.2

Univariate 68.5 34.1 46.1 43.8 47.6 28.9 55.1 39.2 56.5 15.0 43.5 15.2
Univariate-Fine-T *. 60.3 29.0 15.9 25.9 17.7 20.2 38.3 29.2 35.9 12.4 28.5 14.1

Multivariate 6.8 8.9 8.3 5.3 73.9 19.6 34.9 6.9 27.9 7.0 20.0 21.5
Multivariate-Fine-T *. 6.1 7.4 8.5 8.8 68.2 29.0 27.0 5.8 31.0 5.8 19.8 19.9

Multivariate–PCA 5.9 24.8 6.3 3.6 20.5 9.5 26.1 9.2 25.7 6.2 13.8 9.3
Multivariate-PCA-Fine-T *. 16.1 41.9 6.7 3.3 20.5 16.1 26.7 7.0 24.8 6.8 17.0 12.0

* Fine-T indicates that the model was fine-tuned using the time series data specific to the case. ** The Avg column
presents the average of the individual results with the corresponding standard deviations.

Figure 4 illustrates an example of the prediction, showcasing the superior fit of the
multimodal models compared to other developed models. Analyzing the cases where
ARIMA fits better, it is observed that the ARIMA model performs better than the multi-
modal model when the production time series data are close to the mean and exhibit low
dispersion (see Figure 5).

Figure 4 illustrates an example of the prediction, highlighting the superior performance
of the multimodal models compared to other developed models. Upon closer examination
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of cases where ARIMA outperforms other models, it becomes evident that the ARIMA
model excels when the production time series data are close to the mean and exhibit low
dispersion, as depicted in Figure 5.

Figure 4. Example of prediction in a well. It is observed that the best result is obtained with the
multimodal LSTM model.

Figure 5. Example of prediction in a well with low dispersion. A better fit of the ARIMA model
is observed.

8. Discussion

This study introduces an innovative multimodal time series forecasting model applied
to predict the production of oil wells with rod lift systems. The key contribution of this
research lies in the architectural design of the proposed model, which integrates separate
submodels for various data modalities at each time step. This integration facilitates the
effective processing and merging of image-based and numerical data, all of which are
temporally distributed. The processed data seamlessly feed into a recurrent layer, with the
output layer being a dense layer capable of making a one-shot multi-step forecast.

To assess the effectiveness of our approach, we compared it with non-multimodal
univariate and multivariate models, as well as ARIMA models, leveraging state-of-the-art
techniques for time series forecasting. Our findings are summarized as follows:

• The multimodal model demonstrates strong performance across the studied cases,
exhibiting a mean absolute percentage error of 8.2%.

• Detailed analysis reveals that the ARIMA model outperforms the multimodal model
when the production time series data are close to the mean and exhibit low dispersion.

• The multimodal model based on transformers did not yield satisfactory results for the
studied use cases, possibly due to an insufficient number of training examples for this
neural network architecture to learn patterns associated with the studied phenomena.



Eng. Proc. 2024, 68, 31 9 of 9

• Multimodal models exhibit a better fit for the numerical dataset with variables selected
by expert judgment. Conversely, in the case of the multivariate model, the fit was
better for the model trained on the dataset resulting from PCA.

Further research is warranted on the implementation of the multimodal model archi-
tecture based on transformers. Evaluating different positional encoding schemes proposed
in the literature could better exploit the potential shown by this architecture in the fields of
multivariate time series forecasting and extend it to the realm of multimodal time series.

We recommend implementing the proposed multimodal architecture in the study of
other phenomena with temporally distributed multimodal information sources to validate
its performance in different fields.
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