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Abstract: Crime forecasting has gained popularity in recent years; however, the majority of studies
have been conducted in the United States, which may result in a bias towards areas with a substantial
population. In this study, we generated different models capable of forecasting the number of crimes
in 83 regions of Costa Rica. These models include the spatial–temporal correlation between regions.
The findings indicate that the architecture based on an LSTM encoder–decoder achieved superior
performance. The best model achieved the best performance in regions where crimes occurred more
frequently; however, in more secure regions, the performance decayed.

Keywords: crime forecasting; deep learning; spatial–temporal correlation

1. Introduction

Police departments can use crime forecasting to plan where and when to carry out
operations. There are countries that generated forecasting models to predict when crimes
will happen and use predictive policing [1]. This action improves the efficiency in the dis-
tribution of police forces. According to [2], there is empirical research that has shown how
strategies derived from crime prediction led to its reduction. Additionally, the forecasting of
the number of crimes can be useful to evaluate the effectiveness of the strategies employed
to combat the crime, comparing the prediction with the real cases. Predictions can be used
as a measurement of the contrafactual of a police strategy. In areas like marketing, the
forecasting of sales is used to set and monitor performance goals, and in the same way, the
forecasting of crimes can be used by police forces.

Although crime prediction has gained popularity recently, most studies have been
developed in the United States and are biased toward areas with a high population [3].
Therefore, it is convenient to analyze the performance of models for different areas. For
simplicity, a model should be able to predict the crime number of multiple regions of a
country or area of interest. The objective of this investigation is to conduct a comparison
between the performance of various deep learning architectures in predicting crime across
multiple regions for a small nation such as Costa Rica. Specifically, our models can be used
to predict the crimes in any of the 83 regions that the country is divided into. These regions
are called cantones.

Deep learning models have shown good performance in several time series tasks [4–6];
however, they have received little attention in crime forecasting; therefore, our study
contributes to analyzing the performance of deep learning models in crime prediction.

According to [7], it is relevant that crime forecasting models consider the spatial–
temporal correlations between regions because the occurrence of crimes in a region could
influence the occurrence of crimes in other regions. However, this is often ignored in most
models [7]. In our deep learning models, we consider the spatial–temporal correlations
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between regions, including the lags of the five regions that are more correlated with the
count of crimes in each region. To identify these five regions, we followed a procedure
based on partial autocorrelations.

In summary, the novel contributions of this manuscript are as follows:

✓ Comparisons between deep learning models that are capable of forecasting crimes for
multiple regions.

✓ The incorporation of the spatial–temporal correlations between regions in the models
and evaluation of its influence on the prediction performance.

✓ The evaluation of the performance of models for crime prediction in a small country.

2. Literature Review

Crime forecasting research requires the definition of the temporal and spatial units
of inference. In the literary review of [3], it is found that the most common temporal
granularity of prediction is monthly, although studies are using annual, weekly, daily, and
hourly ranges. The inference space is also diverse; several studies divide the main region
of analysis into uniform areas of the same sizes, ranging from 75 m × 75 m onwards [3].
Other studies do not make uniform divisions but rather focus on specific regions [8,9].

Recent research has shown positive results with deep learning models. For example,
in [10], the authors compare the performance of a stacked LSTM-based model with Auto
ARIMA models to forecast the number of times 13 different types of crimes will occur in
the next 12 months. In crimes such as bicycle theft, burglary, weapon possession, public
order, robbery, vehicle crime, and total crime, the best-performing model comes from a
deep learning model, while in others, the best result comes from Auto ARIMA. In [11],
the authors compare LSTM with a direct H-step strategy in relation to SARIMA, for the
monthly crime prediction of the Chicago Dataset. According to the results, the LSTM
model had better performance. The authors of ref. [7] propose a Seq2Seq-based encoder–
decoder LSTM model to predict the subsequent week of total daily crime in Brisbane and
Chicago cities. The study reveals that the proposed model can capture and learn long-term
dependencies from time series. In [9], the authors improved the ST-3DNet model to make
it suitable for the crime prediction domain. The results showed that this model reduces the
RMSE in relation to other models like SVR and LSTM for hourly crime prediction.

In [1], a novel hybrid method of Bi-LSTM and Exponential smoothing to predict
the number of crimes per hour in New York was developed. The proposed approach
outperformed as compared to state-of-the-art Seasonal Autoregressive Integrated Moving
Averages (SARIMA) with a low mean absolute percentage error (MAPE).

Stec and Klabjan [12] combine convolutional neural networks with recurrent networks
to predict the total number of crimes that will occur daily in the cities of Chicago and
Portland. In the same line, ref. [13] created three architectures of deep learning based on the
combination of neural networks to identify hot spots. The combination of the CNN + LSTM
gave the best results.

Recent developed models use self-attention for daily forecasts. For example, ref. [14]
developed a model to capture the dynamic spatio-temporal dependencies while keeping
the model’s architecture reasonably interpretable. The authors of ref. [15] proposed an
encoder–decoder architecture that possesses adaptive robustness for reducing the effect of
outliers and waves in the time series.

Machine learning models do not always obtain the best performance in crime fore-
casting. For example, ref. [16] found the best results in classical models like ARIMA when
the seasonal component was extracted from the time series. In order to compare the
performance of deep learning models with a classical statistical model, we implemented
SARIMAX. We chose SARIMAX instead of SARIMA to include multiple variables in the
prediction of a time series as we conducted in the deep learning models.
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3. Materials and Methods
3.1. Data

We used the property crime records that occurred in Costa Rica from 1 January 2015 to
30 May 2023. The records were collected by the Costa Rican Judicial Research Department
(OIJ). The dataset contains information about the region and time when the crime report
occurred. We aggregated the information per week (441 weeks) and month (101 months) in
order to work with this periodicity.

Costa Rica is divided into 7 areas named provincias and 83 sub-areas named cantones.
There are local governments for each canton; therefore, we decided to use the canton as
the spatial unit of analysis in this study. The raw datasets are in the following: https:
//github.com/martin12cr/crimeCR (accessed on 25 September 2023).

3.2. Models

We generated five models of deep learning and SARIMAX models for the monthly
and weekly datasets. These are as follows:

1. SARIMAX models were developed using the auto.arima function of the pmdarima
Python module. AIC criteria in 25 iterations were applied to select the configuration
of the best model.

2. Long short-term memory (LSTM) with three layers: input layer + LSTM (for month
and week (recurrent units = 60, activation = linear)) + dense layer. The learning rate
was 0.0001 for month and week.

3. Temporal Convolutional Network (TCN) with three layers: input layer + TCN (for
month (132 filters, kernel = 2, activation = tanh), for week (12 filters, kernel = 6,
activation = linear)) + dense layer. The learning rate was 0.0001 for month and 0.01
for week.

4. Encoder transformer with the following: input layer+ multi-head attention (for month
(head size = 512, heads = 2), for week (head size = 128, heads = 4)) + dropout (for
month 30% and for week 20%) + layer normalization+ convolutional 1D + dropout (for
month 30% and for week 20%) + convolutional 1D + layer normalization + multi-head
attention (for month (head size = 512, heads = 2), for week (head size = 128, heads = 4))
+ dropout (for month 30% and for week 20%) + layer normalization + convolutional 1D
+ dropout (for month 30% and for week 20%) + convolutional 1D + layer normalization
+ global average pooling 1D + dense layer (256, activation = linear) + dropout (for
month 30% and for week 20%) + dense layer (128, activation = linear) + dropout (for
month 30% and for week 20%) + dense layer. The learning rate was 0.0001 for month
and 0.001 for week.

5. Classical transformer encoder–decoder with the following: input layer + two encoders
(head size = 512, heads = 8, feed forward encoder = 2048, dropout = 20%) + two
decoders (head size = 512, heads = 8, feed forward decoder = 2048 + dropout = 20%).

6. LSTM encoder–decoder with the following: input layer + encoder LSTM (for month
(60 recurrent units, activation = linear), for week (108 recurrent units, activation = tanh))
+ decoder LSTM (for month (60 recurrent units, activation = linear), for week (108 recur-
rent units, activation = tanh)) + time distributed layer (output Is obtained separately
for each time step). The learning rate was 0.001 for month and 0.0001 for week.

The hyperparameters of models were defined in the training phase through Bayesian
optimization. We used early stopping to determine the number of epochs, and the loss
function was the mean absolute error.

3.3. The Input–Output of the Models

For the monthly models, the inputs were the information about the 12-month lags of
the next variables: the count of crimes of region j, the count of crimes of the five regions
that are more correlated with region j, the month of the year, and the code of the region for
the 12-month lags.

https://github.com/martin12cr/crimeCR
https://github.com/martin12cr/crimeCR
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The outputs were the next 12 months. In the case of the weekly models, we used
the same variables, but the input was the past 8 weeks and the output the next 8 weeks.
Table 1 shows an example of the input array and output vector for one weekly instance.
We concatenated the instances of all regions in order to create a model that can predict for
any region.

Table 1. An example of an instance for the input and output of the weekly model.

Input Array Output Vector

Variables i − 8 i − 7 i − 6 i − 5 i − 4 i − 3 i − 2 i − 1 i + 0 i + 1 i + 2 i + 3 i + 4 i + 5 i + 6 i + 7
region j 11 25 38 30 29 28 31 29 33 31 21 29 33 27 25 26
region 1 36 60 51 44 70 66 46 64
region 2 19 37 33 39 36 39 45 45
region 3 22 31 27 36 50 31 42 29
region 4 17 29 31 36 43 44 42 43
region 5 14 17 26 22 21 38 31 34
month 1 1 1 1 1 2 2 2
week 1 2 3 4 5 6 7 8
code j 2 2 2 2 2 2 2 2

3.4. Spatial–Temporal Correlation

For the identification of the regions more related to the count of crimes of a region j,
we applied the next procedure:

1. Compute the partial autocorrelations between the time series and the 8 lags (12 lags
for the monthly dataset) of the remaining time series.

2. Obtain the average partial autocorrelations between the time series and the remaining
time series.

3. Obtain the top 5 average partial autocorrelations to identify the regions more related
to the count of crimes of region j.

3.5. Experimental Procedure

We used cross-validation on a rolling basis to evaluate the models’ performance and
make comparisons between them. Three partitions in the training and test were generated.
Two metrics were used to compare the performance of the models: the mean absolute error
(MAE) and a modified version of the MAPE. The modification was to add one unit to the
vector of real values and to the vector of predictions, to avoid the no-definition when there
were no crimes in a specific spatial–temporal range. In the dataset, it is common to find
records where no crimes occurred. This situation generates no-definition when the classical
MAPE is computed. The formula is the following:

MAPE_modified =
∑n

k=1
| (y k+1)−(ŷk+1)|

(yk+1) ∗ 100

n

where yk = real value, ŷk = prediction, n = forecast horizon.

4. Results

Although the models were generated to predict a horizon of 12 months and 8 weeks,
we also analyzed the performance of 3 months and 2 weeks, using only the first values of
the prediction vector. Additionally, for each model, we obtained the performance metrics
for the 82 regions and the three test partitions.

To determine if there are significant statistical differences between models, CD dia-
grams were generated, following the procedure of the package autorank from Python [17].
The CD diagrams show the average rank of each model. The horizontal line represents the
critical difference for the comparison between models. When the average distance between
models is greater than the critical distance, there is a statistically significant difference in
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the performance using a p-value = 0.05. Therefore, when the horizontal line intersects the
vertical lines of the average rankings, there is no difference between models.

Figure 1 shows the CD diagrams based on the modified MAPE. In the forecast of crimes
for the next three months and the next two weeks, the LSTM encoder–decoder obtained the
best average rank with a value close to 2 and 1.5, respectively. (The best possible average
rank is 1). The difference between these average ranks and the average ranks of the second-
best model is statistically significant. In relation to the prediction of 12 months, there is
no statistically significant difference between the LSTM encoder–decoder and SARIMAX;
meanwhile, in the prediction of the next 8 weeks, the best model was SARIMAX. Figure 2
shows the CD diagrams based on the MAE. Based on this metric, the results suggest that
the best option is the LSTM encoder–decoder for the four-forecasting horizon.
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In Figure 3, it is possible to analyze the performance metrics between regions and at
the same time show the contribution of the spatial–temporal correlation. The box plots
of this figure show the average MAPE for the 82 regions of the LSTM encoder–decoder
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that includes the spatial–temporal correlation and a baseline LSTM encoder–decoder that
does not include the spatial–temporal correlation. We can obtain two main findings from
these graphs. First, the incorporation of the spatial–temporal correlation, as we conducted,
improves the performance, because the box plots tend to show lower MAPE values for the
monthly and weekly predictions. The second finding is the high variability in the error
prediction between regions, regardless of the spatial–temporal correlation. For example,
for the forecasting of three months, the MAPE varies from 0.05 to more than 0.4. There are
regions with acceptable values of the MAPE and others with high values, for any of the
forecasting horizons.
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without (baseline) spatial–temporal correlation.

Finally, to understand the difference in performance between models, we categorized
them into four percentile groups according to the MAPE and calculated the average of
four features of the time series by group. Table 2 shows that in percentile 25 of the best-
performing regions, the time series has a stronger trend, less variability, and a higher crime
count. The feature named mean, which is the mean of crimes per period, suggests that the
time series are less predictable in regions with fewer crimes. When the non-linearity feature
is analyzed, it is clear that in the weekly time series, the best performance appeared in the
less non-linear time series, but in the monthly time series, there is not a clear tendency to
hold this finding.

Table 2. Features of times series according to percentile of performance.

Horizon Percentile Trend Non-Linear Cv Mean

3-month

0–25 0.58 0.40 23.8 121.9
25–50 0.53 0.52 30.8 44.3
50–75 0.48 0.37 33.0 34.2
75–100 0.35 0.43 51.6 10.2

12-month

0–25 0.57 0.43 24.3 122.7
25–50 0.53 0.46 29.9 38.9
50–75 0.40 0.27 37.4 21.9
75–100 0.43 0.55 47.8 26.3

2-week

0–25 0.51 0.50 38.5 27.8
25–50 0.40 0.30 56.2 8.4
50–75 0.31 0.17 75.8 5.3
75–100 0.35 0.19 64.9 5.7

8-week

0–25 0.53 0.48 44.0 27.0
25–50 0.36 0.29 54.7 8.6
50–75 0.36 0.22 68.8 6.4
75–100 0.34 0.18 67.4 5.2

Note: trend = strength of the trend based on the tsfeatures package of R. The score is between 0 and 1, 1 being the
strongest strength. non-linear = measure the non-linearity of the time series based on the tsfeatures package of R.
Higher values represent higher non-linearity. Cv = coefficient variation of the time series. Mean = mean of cases
per period.
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5. Conclusions

The best alternative model to predict the number of crimes in multiple regions was the
LSTM encoder–decoder. The proposal model gave the best results for monthly and weekly
predictions based on the MAE and MAPE metrics. Our methodology to incorporate the
spatial–temporal correlation to the models contributes to the reduction in prediction error.

The models should improve because they were more efficient at predicting the crimes
in the more dangerous regions; meanwhile, in the regions where the number of crimes is
lower, and zero appears more frequently, the performance decays. This kind of time series
tends to be more non-linear and has a weaker trend and high variability.

Future studies should examine the effectiveness of various approaches for capturing
spatial–temporal correlations and examine the convenience of predicting the occurrence
of a crime in a spatio-temporal range, instead of predicting the number of crimes in
regions with low numbers of crimes. More complex methods generated in the state of
the art, e.g., refs. [9,15], to predict the number of crimes at the hourly level should be
compared with simple methods such as the LSTM encoder–decoder to predict the number
of crimes in months or weeks. We have shown that more complex architectures like TCNs
or transformers obtained worse results than more simple architectures, but new findings
require a deep comprehension of the models’ behavior.
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