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Abstract: Deep learning has brought significant advancements in the field of artificial intelligence,
particularly in robotics, imaging, sound processing, etc. However, a common major challenge faced
by all neural networks is their substantial demand for data during the learning process. The required
data must be both quantitative and stationary to ensure the proper computing of standard models.
Nevertheless, complying to these constraints is often impossible for many real-life applications
because of dynamic environments. Indeed, modifications can occur in the distribution of the data
or even in the goals to pursue within these environments. This is known as data and concept
drift. Research in the field of continual learning seeks to address these challenges by implementing
evolving models capable of adaptation over time. This notably involves finding a compromise on
the plasticity/stability dilemma while taking into account material and computational constraints.
Exploratory efforts are evident in all applications of deep learning (graphs, reinforcement learning,
etc.), but to date, there is still a limited amount of work in the case of time series, specifically in
the context of regression and forecasting. This paper aims to provide a first survey on this field of
continuous learning applied to time series forecasting.

Keywords: continual learning; time series forecasting; deep learning; nonstationary environment;
lifelong learning

1. Introduction

Machine learning applied to nonstationary environments, where changes can occur
over time, is a rapidly growing field as it represents a challenge for future artificial intelli-
gence applications. The exploration of new models with adaptive capabilities is currently
grouped under the terminology of continual learning (CL). This domain encompasses
themes like progressive learning [1], incremental learning [2], and lifelong learning [3].
Despite some specific differences, these various designations converge on the topic of a
continuously learned model and the issue of catastrophic forgetting. Indeed, in real-world
applications, obtaining an exhaustive and representative dataset before learning is often
impossible. Thus, continual learning advantage lies in its incremental learning ability over
time, avoiding complete retraining on a potentially substantial amount of data. Its interest,
compared to standard models, is particularly significant in the case of data drifts where
the data distribution changes over time [4]. Overall, the idea is to seek the perfect model
able to evolve with nonstationary data, while dealing with plasticity/stability dilemma
and without exhibiting symptoms of forgetting knowledge [5–10]. This is achieved while
enhancing its efficiency when applied to new data as well as on previously seen data.

Several solutions exist for addressing the issue of catastrophic forgetting [11]. They
can be grouped into three kind of strategies: rehearsal strategy, consisting of repeating
a fraction of past data during learning; regularization-based strategy, applied on model
parameters; and structural strategy, where the model grows over time when encountering
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new tasks [12–16]. Each strategy and its hybrid/cross versions [1,17–19] present a trade-off
between constraints and advantages.

The study of continual learning takes multiple research directions depending on
application domains, including strategies dedicated to graphs [20], reinforcement learn-
ing [21,22], classification [23], or regression [7] tasks. In this work, we focus on the review
of forecasting tasks applied on time series data, drawing a parallel with the classification
domain, which represents one of the most explored axes in continual learning. Additionally,
this work seeks to provide concise insights about required notions in the topic of continual
learning while presenting compelling analyses aimed at addressing inherent questions
associated with the principles of continual learning.

2. Continual Learning Principles

The problem of catastrophic forgetting, which is the cornerstone of continual learning,
is correlated with the notion of plasticity/stability dilemma. A model exhibits great stability
when it learns from a fixed dataset, supposed to represent perfectly and extensively all
the situations (perfect sampling). If the data do not change over time, meaning their
distribution, patterns, or the environment remain constant, then the stability of a model
enables it to predict the desired outcome with high precision throughout all its usage.
Nevertheless, it fails to address changes in data distribution or in goals to achieve. On the
other side, the plasticity of a model allows it to continuously and quickly adapt to new tasks
and data, which is one of the main strengths of continual learning. However, the downside
of excessive plasticity is the loss of retaining past knowledge: as the model evolves over
time, the accuracy decreases on previously seen data. This is the principle of catastrophic
forgetting. For a standard model, a fine-tuning mechanism could be applied occasionally
to allow model readjustment to some extent, for new tasks and data. Nevertheless, this
strategy remains limited by the amount of data needed for adaptation as well as by the fact
that old knowledge and abilities of the network are still lost [24]. The goal of continual
learning is to address this plasticity/stability dilemma, but the solution is often constrained
by an increasing cost in performance (memory, time, model size, etc.).

To address the catastrophic forgetting issue, the literature of continual learning in-
troduces three strategies: data rehearsal, parameter regularization, and model exten-
sion [24]. The principle of data replay (rehearsal) involves constantly reintroducing sam-
ples of past data into learning steps to adapt the model [25]. The goal is to prevent forgetting
by continuously stimulating the model with past knowledge. This approach often yields
the best results in terms of model accuracy, but it comes with a perpetual increase in the
amount of data that the model must ingest over time. Thus, recent research is focusing
on a rehearsal-free version [26]. Multiple axes can be studied regarding the management
of data to be reintroduced, as presented in [13,27–29]. The approach of architectural
modification (model extension), presented in [30,31], involves adapting the model directly
according to the needs. The size of the layers is growing while encountering new tasks,
avoiding modification of parts of the network that are used for managing previous tasks.
By avoiding the modification of previously learned weights, there is no loss in performance
on previously learned tasks. However, similar to the data replay strategy, its downside is
the continuous growth in the model size. This issue can be addressed by incorporating
a pruning mechanism [32] to remove components within the network as they become
unnecessary. But this process is not well established and still has its drawbacks regarding
performance. Lastly, the regularization approach holds the best potential in the long
run, although it may potentially exhibit some forgetting over time. It involves penalizing
the modification of neural network weights based on their impact on model accuracy. As
presented in the EWC algorithm [12,33,34], the aim is to select, through penalization, a
weight space of the model that is the best to address all the tasks learned beforehand. The
major advantage is that the work takes place in a Fisher matrix to compute the model loss
during its update, which does not imply network or data replay growth. On the contrary, if
too many disjointed tasks are learned, it can lead the model to propose an average version
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of itself, satisfying a minimum performance on all tasks without performing in any of
them. These three main strategies also have their hybrid versions, combining, for example,
regularization with data replay to seek the best possible performances [17,19,35–37].

Currently, the field of continual learning research is mainly focused on classification
tasks (imagery, natural language processing, medicine, etc.) and, particularly, on three
scenarios for adapting the model over time, as presented in [2]:

• “Task Incremental Learning where it sequentially learns to solve a number of distinct
tasks” (a task is associated with achieving a goal within a context, and if either or both
change, we switch tasks);

• “Class Incremental Learning discriminate between incrementally observed classes”;
• “Domain Incremental Learning learn to solve the same problem in different contexts”.

In all these situations, the model is progressive, and its classification capabilities
increase overall as it encounters new data over time. Thus, the goal within the classification
research field is to propose new approaches to solve the catastrophic forgetting problem
while achieving satisfactory precision results. Thanks to several standardized databases,
such as MNIST and CIFAR, etc., used to compare and evaluate the performances of new
models, new continual learning classification models [12,15,17,32] can be compared easily
with already verified standard models.

3. Continual Learning for Time Series

Similarly to in the classification research field, continual learning applied to time
series forecasting aims to address drifts in tasks and data, with the ability to continuously
learn and make a model evolve over time, while resolving catastrophic forgetting issues.
Although there are relatively common databases representing time series, most research on
continuous learning for regression tasks focuses on specific applications for each use case
which. Even if these applications promise concrete improvements in the field of time series
forecasting, the comparison between standard models as well as other continuous learning
algorithms is not straightforward.

3.1. Main Principles and Overview

Compared to classification domain, two scenarios can be encountered in the forecasting
domain, as outlined in [38]—page 4:

• Incremental learning of the data domain, which refers to the situation where the
underlying data generation process is changing over time, due to the nonstationarity
of the data stream. This means that the distribution of the data relative to the same
objective is varying over time.

• Incremental learning of the target domain, which refers to the situation where
the output of the model varies over time. This is the case when the number or proper-
ties of prediction targets is changing (prediction of new variables like in multioutputs
networks, changing in time prediction horizon, etc).

The literature on continual learning for regression and forecasting does not address, at
all, the task incremental scenario, as defined previously for classification problems. When
‘task’ is mentioned, it most often refers to one of the two scenarios defined here (target or
data domain incremental learning).

The incremental learning of the data domain refers either to tasks change defined
by external supervision, human, or machine, as in the case of labels for classification,
or to tasks that are drifting “naturally” from one to another because of changes in the
environment that are not always identifiable (apparent drift vs. real drift). The fact
is that most research works on continual learning for time series are considering task
management based on an arbitrary separation of the dataset into fixed-size subsets, each
one corresponding to a new task [24,27,29,39–46]. These approaches are called Task-based
approaches. Although operational and useful for evaluation of CL systems, this task
management may not represent real transitions between tasks. It mainly relies on an
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incremental learning approach where the addition of tasks allows the model to progress
through the data, leaving catastrophic forgetting management solely to the implemented
strategy. On the contrary, correct task management (either based on explicit supervision of
the system by an expert or based on an unsupervised supervision of the data) can helps
the model to avoid catastrophic forgetting (including better selection of data for replay in
the rehearsal approach or proper selection of weights to retain in the regularization
approach), as well as to deal more precisely with plasticity/stability dilemma. Ref. [47]
particularly addresses the issues related to arbitrary task definition and proposes a new task
detection system through loss analysis during model learning (referred to as Task-free
approach). Other research works, such as [35], propose the idea of “novelty” data buffer
based on their distance from the prediction accuracy.

Considering the application domain of continual learning for forecasting, we can
observe that it is mainly applied in the energy domain [24,35,36,39–41,46]. Other sub-
cases of application refer to industrial maintenance [36,43], climatic [36,42,45], or traffic
analysis [27,36]. Each application uses a distinct dataset, hindering direct model compari-
son. It is noteworthy that, in all presented application cases, even the lowest performances
still surpass those of standard baseline models. Also, we can observe that even if the
issue of catastrophic forgetting [11] was already known, it was not widely emphasized for
improving model performance. Only the last few years have seen a trend of consolidating
research in this field under a common banner like continual learning, with the question of
solving the ‘catastrophic forgetting’ matter.

3.2. Continual Learning Analysis

Continual learning techniques have already proven to be effective in various domains.
In the case of forecasting data from time series, [24] highlights the interest of the principle
(named here lifelong learning) (see Figure 1). It uses a mechanism of replaying sample
from past data coming from the time series.

Figure 1. Comparison of fine-tuning, lifelong learning, and joint training for sequential task learning
A (blue) → B (green) → C (red)—Figure 11— [24].

This approach is compared with fine-tuning and Joint-training, which provide
an upper bound of performances in terms of prediction accuracy. The upper bound is
represented by the joint dataset of all available learning tasks at a given time. Lifelong
learning demonstrates performances close to the upper bound, contrary to fine-tuning,
which exhibits a loss of precision on old tasks.

He et al. [41] (see Figure 2) also illustrate the superiority in term of MSE of some
continual learning models (LWF, EWC, O-EWC, SI) compared to a baseline in the context of
target and data-domain incremental scenarios. This is achieved most often at the expense
of a cumulative increase in learning time. The dots show MSE metric and the learning time
for each experiment. Squares indicate the average test error for each task during training,
and stars indicate the average test error for each task after training all tasks.
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Figure 2. Comparison of training time and average MSE on test datasets over 20 experiments for
algorithms in the data and target domain scenario—Figures 1 and 2— [41].

In the same paper [41] (see Figure 3), the authors provide an analysis of the forgetting
rate (Equation (1)) along with the new tasks encountered in time series forecasting. The
results show a better overall accuracy (Figure 2), as well as a much lower forgetting rate
over time, when using continual learning models, compared to the standard model without
any help against catastrophic forgetting (Figure 3).

f orgetting ratio =
max(0, Lwarm_up2 − Lwarm_up1)

Lwarm_up1 , (1)

where Lwarm_up1 indicates the MSE on the warm-up dataset at the end of the warm-up
phase and Lwarm_up2 indicates the error on the same dataset at the end of the update phase.

Figure 3. Performance of algorithms with increasing number of tasks by 2 in each step in the task
and data domain incremental scenario—Figures 3 and 4— [41].

In the case of highly periodic datasets, the question of the usefulness of a contin-
ual model against a standard model arises. The idea is that a training on a sufficiently
large dataset encompassing an entire periodicity may suffice on its own. Presented
in [35] is an experiment based on an artificial dataset with daily and annual periodic-
ity as well as an application on a dataset representing wind farm energy production
(Experiment 1—Table 9 —[35]). The models were trained on a subset of data in an offline
manner before being applied to online learning. On average, the results on periodic data
showed worse performances than the standard model due to the plasticity of continual
learning. Specifically, 1120 models were trained, and only 32.1% showed better results than
the standard model. The parameterization of the CLeaR model [35] applied here defines its
ability to understand the notion of data periodicity. With the right selection, the continual
learning model can still be close to a standard model. That said, the application of the model
to the second dataset from wind farms distinctly demonstrates the advantage that continual
learning can bring to time series forecasting. Although the wind-dependent dataset exhibits
daily and seasonal periodicity, climatic variations have applied variations within the data
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shift. This can be observed in the results given in Table 1, where three instances, ”A”, ”B”,
and ”C”, of the same model are compared: instance ”C” represents the continual learning
model, which adapts more effectively than the standard model “A” and the fine-tuned
model “B” to changes. Furthermore, this study shows a lower average catastrophic forget-
ting rate, for instance, ”C”, both in the AE (autoencoder) part and in the predictor, then
“B” (fine-tuning instance), highlighting the contribution of strategies to provide assistance
against knowledge forgetting when learning (see Table 2).

Table 1. Average MSE for the three instance of the same model over 10 wind farms forecasting
datasets (Table 9—[35]). Model C is the CLeaR continual learning model (best in bold).

Fitting Error MSE (e-2)

Instance A Instance B Instance C Baseline

Mean 5.138 5.442 2.829 3.190

Table 2. Average forgetting ratio over the 10 wind farms forecasting datasets from CLeaR model
instances (Table 11 —[35]).

Forgetting Ratio

Instance B (AE) Instance C (AE) Instance B Instance C

Mean 1.402 1.171 3.550 1.161

3.3. Trends and Challenges

The development of deep learning in time series forecasting is still growing, with little
concrete application cases [48]. However, emerging sub-domains like continual learning
are already being studied for use in dynamic environments. The literature shows promising
application outcomes designed to face the challenge of unstable environments where data
evolve over time. Two main trends in the research can be seen:

• The first one focuses on model evolution and the crossover of different common
continual learning strategies to more effectively mitigate catastrophic forgetting [35].

• The second distinguishes itself on a structural level by implementing models with a
biologically inspired approach, aiming for behavioral mimicry of living organisms [36].

Future challenges revolve around adapting complex and recent popular deep models,
such as those used in image or language processing. Notably, encoder–decoder systems
and attention mechanisms [49] show great promise, with transformers or autoencoders that
have proven their ability to handle time series data [24,35,36,41,43]. Furthermore, while it
is important to diversify the application of such models and their strategies to different use
cases to provide a broad range of expertise, a lack of common benchmarks in the literature
on continual learning for time series prediction is noticeable and highlights the need for
resolution of this.

Also, most strategies against catastrophic forgetting were initially developed for
supervised classification tasks and then adapted for regression tasks. This explains the low
number of research papers proposing task-free solutions, where tasks are not predefined
(contrary to what is mainly seen in image classification). Also, papers that implement
incremental learning models, like [50–55], do not adopt an approach against catastrophic
forgetting and focus only on adaptive approaches over time. This denotes an area for
improvement and bridges the development gap between classification and regression.

Other challenges involve developing new relevant metrics to better describe the
effectiveness of a model under continual learning strategy, including the concept of a model
forgetting rate and the stability/plasticity related to the adaptation speed of a model’s loss
function during its learning process. It would also be relevant to propose complementary
measures related to the cost of continual learning strategies in terms of resource usage
(CPU, GPU, memory, electricity) [56]. This would allow another kind of comparison with
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standard incremental approach such as joint training. Also, it is currently recommended
to provide solutions to make the model’s results explainable and interpretable. This
explainability serves the purpose of understanding how the model operates as well as
providing legitimacy to the results obtained. If this was already investigated in the field of
time series [57,58], continual learning becomes, at the same time, a new playground as well
as a potential source of explainability to explore.

4. Concluding Remarks

The application of deep learning in the field of time series forecasting is still growing
compared to common statistical approaches. One of the strengths of neural networks lies in
their learning abilities. Although they are incremental in nature, their application is mostly
static, with separate training and testing batches to validate their capacity. Their application
is becoming increasingly ubiquitous in various domains of society, particularly in resource
monitoring and demand prediction to effectively adapt any underlying process. Continual
learning, by its name, is one of the techniques currently under development that are seen
as key to address these issues by offering adaptability and stability solutions and ensuring
the evolution and relevance of a service. The pioneering domain is for classification tasks,
which currently receive much more attention than any other domains such as time series
prediction. The three major approaches currently seen in the literature of continual learning
focus on architecture, replay, and parameter regularization to meet expectations. These
approaches provide the groundwork for building hybrid solutions more suited to each
application case.

In recent years, there has been specific research applied on time series forecasting with
continual learning strategies. One of the key points to consider in this domain, as in the
others, is how patterns are reoccurring and how to avoid catastrophic forgetting. The other
key point comes with the notion of tasks which are neither well defined nor managed in
time series. In this domain, tasks are often implicit and we need task-free mechanisms and
user interactions depending on application domains.

We also need to propose and agree on common benchmarks dedicated to continual
learning. Similar to classification, this would allow for easy assessment of the performance
of each model using multiple standard metrics including MSE, MAE, and RMSE, as well
as domain-specific metrics such as, for example, the forgetting rate of a model or stabil-
ity/plasticity metrics to define. It would also be relevant to propose measures related to
the resource consumption (CPU, GPU, energy) needed over time for continual learning,
in comparison with traditional methods. Analysis could be performed, considering the
benefits in performances on one side compared to computational and energy resources
involved. Budgeted strategies can also be explored.

Applications of continual learning are starting to emerge, especially in the fields of
energy and economic forecasting for businesses. However, this remains relatively minor
considering the numerous application domains where continual learning could have a
real impact, such as in medicine and environmental studies (meteorology, climate, and
hydrology) [10,27,59,60]. Further research and development are essential to unlock the full
potential of continual learning in time series forecasting across diverse fields, paving the
way for its broader adoption and integration into various real-world applications.
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