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Abstract: Improved navigability can enhance inland waterway transportation efficiency, contributing
to synchro-modal logistics and promoting sustainable development in regions that can benefit from
the presence of considerable waterways. Modern technological solutions, such as digital twins in
corridor management systems, must integrate functions of navigability forecasts that provide timely
and reliable information for safe trip planning. This information needs to account for the type of
vessel and for the environmental and geomorphological characteristics of each navigation trait. This
paper presents a case study, within the EU project CRISTAL, focusing on the Italian Po River, of
which the navigability forecast requirements of a digital twin are illustrated. Preliminary results
to deliver navigability risk information were obtained. In particular, the statistical correlation of
water discharge and water depth, computed from historical data, suggested that efficient forecast
models for navigability risk, given some water discharge forecasts, could be built. To this aim, the
LSTM (long-short-term-memory) technique was used on the same data to provide models linking
water discharge and water depth predictions. Future work involves further testing these models
with updated real data and integrating outcomes with climatic and infrastructure management
information to enhance the accuracy of the risk information.

Keywords: resilience; navigability forecast; deep learning; waterways; time series analysis

1. Introduction

Inland waterways are essential for efficient, low-cost transportation; hence, they
significantly contribute to economic growth and environmentally sustainable logistics.
However, the navigability of waterways highly impacts the efficiency of the operations.
Technological solutions, such as digital twins, can effectively support the monitoring and
management of waterway operations as well as their resilience; digital twins need to
address requirements of environmental, infrastructure, and social dimensions.

As far as the environmental perspective is concerned, rivers usually do not have
a regular water depth, and shallow areas can impede the passage of large vessels. The
draught (the depth of a vessel’s hull below the waterline) of the various vessels must be
considered when planning the trips, as insufficient water depth along the whole river path
could lead to emergencies. Seasonal changes in water depth due to factors like rainfall or
drought also affect river navigability. Low water depth during dry seasons may lead to
restrictions or even the complete closure of certain river sections for navigation.
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From the infrastructure management perspective, poorly maintained channels, locks,
and dams can hinder smooth navigation, and the absence of proper dredging to maintain
navigable depths can result in sedimentation and in the formation of sand dunes, reducing
water depth. More generally, natural obstacles like sandbars, rocks, and fallen trees, which
create hazards for vessels, need to be taken care of in infrastructure maintenance and
resilience planning as these are hard to prevent, especially in case of extreme events. Thus,
for a given case study, data analysis for the purpose of navigability forecasting requires
expert knowledge that combines hydrology, climate, and infrastructure maintenance
influencing factors.

Finally, from the social perspective, as different jurisdictions may have varying rules
and restrictions, this creates challenges for the generalizability of the technical solution
and/or adaptation to different contexts.

The European Commission funded the research project CRISTAL, “Climate resilient and
environmentally sustainable transport infrastructure with a focus on inland waterways”, focuses
on the development of inland waterway transport (IWT) and its infrastructure with the
vision of increasing the operability, sustainability, and resilience of IWT.

The crucial aim of the CRISTAL project is to create innovative technology for the
monitoring and digitization of river transport as part of multimodal chains. The resulting
solutions will be combined into a collaborative open data platform for synchro-modal
resource planning and operation preparation and will include a comprehensive real-time
monitoring and prediction system for water depth and hydrological conditions, including
and integrating the current best practice requirements and standards, for instance, Digital
Inland Waterway Area, DINA [1], and by the European Federated Network of Information
exchange in Logistic, FENIX [2]. The project involves partners from nine countries,
namely, Poland, Germany, Italy, Belgium, the Czech Republic, Hungary, Greece, France
and UK. The case studies will cover Poland (Vistula and Odra), Italy (Po), and France
(Mosele, Seine).

This paper presents the case study related to the Italian Po River, of which the naviga-
bility forecast requirements of a digital twin are illustrated in Section 2. Preliminary results
to deliver navigability risk information were obtained by using Long-Short-Term-Memory
(LSTM) forecast models. The source datasets, the methods, and the results are presented in
Section 3. Plans for future work are given in Section 4.

2. The Free-Flowing Waterway Navigability Problem for Po River

Inland navigation in Northern Italy develops within and around the natural course
of the Po River that crosses different Italian regions, having a primary role within the
“Padano–Veneto Waterway System”. The inland waterway mode of transport provided it
has enhanced reliability (i.e., being able to continuously monitor and predict navigability
issues) and resilience to extreme events, has a great potential to enhance the logistics in
this area of high economic dynamism by reducing the frequent congestion of motorways
and railways. Also, the inland waterway mode of transport, provided it has environmental
sustainability, can make a significant difference in reducing harmful gas emissions from the
logistics sector.

As far as reliability and resilience are concerned, in the Po River basin a cutting-edge
technology is currently in operation to provide water forecast information via a multi-model
approach. Such technology, referred to as the Flood and Drought Early Warning System of the
Po River, EWA system, is fed by real-time data from monitoring networks. The sensor data
is coupled with radar data and meteorological scenarios, and it is processed via different
numerical models to provide forecasts during drought and flood events (Figure 1). The
system is shared and maintained with all regional and national agencies involved in the
flood and drought risk management in the Po River.
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Figure 1. Flood and Drought Early Warning System of the Po River basin. The figure highlights the 
monitoring points and a type of chart provided by the tool by combining the source data. 

Critical sections of the Po River, i.e., the locations where the accumulation of natural 
material in the riverbed can affect navigability, are known and constantly monitored, 
mainly during low regimes. The critical sections as shown in Figure 2. 

 
Figure 2. Monitored critical sections in the main Po River where different colors represent the dif-
ferent stretches.  

The aim of a digital twin supporting the Po River logistic system is to elaborate the 
following: (i) the specific navigability level in each one of the several critical sections 
within each stretch (i.e., from one docking to the following one) and (ii) the overall navi-
gability level in each stretch (Figure 2 shows the stretches, and Figure 3 provides a repre-
sentation of the result as a navigability risk matrix). Navigability and alert information 
resulting from a digital twin will be related to different classes of vessels and different 
specific uses (e.g., transport, recreational uses, etc.) and loads. 

Figure 1. Flood and Drought Early Warning System of the Po River basin. The figure highlights the
monitoring points and a type of chart provided by the tool by combining the source data.

Critical sections of the Po River, i.e., the locations where the accumulation of natural
material in the riverbed can affect navigability, are known and constantly monitored, mainly
during low regimes. The critical sections as shown in Figure 2.
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Figure 2. Monitored critical sections in the main Po River where different colors represent the
different stretches.

The aim of a digital twin supporting the Po River logistic system is to elaborate the
following: (i) the specific navigability level in each one of the several critical sections within
each stretch (i.e., from one docking to the following one) and (ii) the overall navigability
level in each stretch (Figure 2 shows the stretches, and Figure 3 provides a representation of
the result as a navigability risk matrix). Navigability and alert information resulting from a
digital twin will be related to different classes of vessels and different specific uses (e.g.,
transport, recreational uses, etc.) and loads.
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Figure 3. Draft of a navigability risk forecast matrix. A navigability risk level (red = high risk, yellow 
= medium risk, and green = low risk), based on the navigability forecast, will be provided for each 
stretch and for different vessel classes (according to the draught) for the next 10 days (gg = day). 

3. Datasets and Methods 
This section presents the datasets and a concise analysis, followed by an explanation 

of the methodology. Conducting data analysis, we focused on two pivotal time series da-
tasets—water depth and water discharge—gathered from strategically positioned sensor 
stations spanning multiple years. The ensuing discussion outlines the intricate analytical 
procedures and frameworks applied to extract meaningful insights into the hydrological 
dynamics under investigation. The water depth time series delineates variations in depth, 
enabling an assessment of riverbed topography changes at specified sample stations. Con-
currently, the water discharge time series, derived from additional river stations, provides 
insights into flow dynamics influenced by precipitation, snowmelt, and other hydrologi-
cal factors. Employing descriptive statistics and visualization techniques, the objective is 
to uncover paĴerns and correlations within these datasets, contributing to a nuanced fore-
cast of river navigability. The analysis is rooted in meticulously collected daily measure-
ments from two distinct critical section stations, each representing unique segments. The 
dataset spans from 1 January 1988 to 12 May 2022, comprising 12,294 and 12,255 records 
for the respective stations. Recorded at daily intervals, the time series data underwent 
careful handling of missing values using the forward fill method to ensure data con-
sistency. The time series of water discharge and water depth are represented Figure 4 and 
the main indicators of a descriptive analysis are reported in Table 1. 

 
Figure 4. Surveyed daily water depth collected at each critical section and river discharge data 
recorded at each monitoring section of the river Po River derived from the monitoring network. 
Data source: www.agenziapo.it. 

  

Figure 3. Draft of a navigability risk forecast matrix. A navigability risk level (red = high risk,
yellow = medium risk, and green = low risk), based on the navigability forecast, will be provided for
each stretch and for different vessel classes (according to the draught) for the next 10 days (gg = day).

3. Datasets and Methods

This section presents the datasets and a concise analysis, followed by an explanation
of the methodology. Conducting data analysis, we focused on two pivotal time series
datasets—water depth and water discharge—gathered from strategically positioned sensor
stations spanning multiple years. The ensuing discussion outlines the intricate analytical
procedures and frameworks applied to extract meaningful insights into the hydrological
dynamics under investigation. The water depth time series delineates variations in depth,
enabling an assessment of riverbed topography changes at specified sample stations. Con-
currently, the water discharge time series, derived from additional river stations, provides
insights into flow dynamics influenced by precipitation, snowmelt, and other hydrological
factors. Employing descriptive statistics and visualization techniques, the objective is to
uncover patterns and correlations within these datasets, contributing to a nuanced forecast
of river navigability. The analysis is rooted in meticulously collected daily measurements
from two distinct critical section stations, each representing unique segments. The dataset
spans from 1 January 1988 to 12 May 2022, comprising 12,294 and 12,255 records for the
respective stations. Recorded at daily intervals, the time series data underwent careful
handling of missing values using the forward fill method to ensure data consistency. The
time series of water discharge and water depth are represented Figure 4 and the main
indicators of a descriptive analysis are reported in Table 1.
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Figure 4. Surveyed daily water depth collected at each critical section and river discharge data
recorded at each monitoring section of the river Po River derived from the monitoring network. Data
source: www.agenziapo.it.

www.agenziapo.it
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Table 1. Descriptive analysis of water depth and water discharge rates at a station.

Index Depth (cm) Discharge (m3/s)

Records Count 12551 12551
Mean 333.32 950.67

Std 125.41 519.44
Minimum Value 60.00 221.50
25th Percentile 250.00 587.80

Median 330.00 796.61
75th Percentile 360.00 1157.08

Maximum Value 1180.00 4770.00

Observations revealed that the average depth and discharge spanning the years were
333 cm and 950 m3/s, respectively, at a station. The correlation between depth and discharge
attributes was notably high at 0.73, indicating a strong interdependence in hydrological
relations (see Figures 5 and 6).
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The stationarity of the time series data was rigorously assessed through the Aug-
mented Dickey–Fuller (ADF) test.

The test results, yielding p-values of 1.32 × 10−21 for depth and 9.45 × 10−22 for
discharge rate, unequivocally substantiate the stationarity behavior within the recorded
values, indicative of a stable and consistent hydrological pattern over time (see Figure 7).
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A meticulous seasonal decomposition analysis revealed a distinct 6-month pattern
in river depths (see Figure 8). The trend indicated stable depths with a marginal increase.
Notably, elevations in river depth and discharge were observed in May, June, November,
and December, emphasizing a discernible seasonal trend during these months.
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discharge (b) at the station.

Exploring the dynamics of water depth and discharge aimed to uncover patterns and
trends. This foundational analysis lays the groundwork for designing machine learning
models intended to predict navigability, as described in the subsequent subsections.

3.1. Basic Probabilistic Method for Navigability Risks

A first approach used to evaluate the navigability of the Po River was provided using
a statistical method. The time series of historical daily survey of water depth, collected
for more than 40 yrs, coupled with discharge data available at each monitoring station,
can be used to define a good estimation of probability along several critical sections on
the Po River. That probability, joined with the predicted discharge data provided by the
EWA system, based on hydrological and hydraulic models (cfr. Section 2), provides a basic
method to compute the probability of navigability for each critical section for the next
10–15 days.

Figure 9 shows examples of navigability risks for the vessel classes (based on draught)
given the discharge classes. The probability was computed based on the percentage
of occurrences of the event water depth > minimum draught in the historical data. The
navigability risk of a stretch is provided as the worst navigability risk value among those
obtained for each critical section of the stretch. On the one side, this approach uses a huge
amount of data and can define a good statistical correlation between discharges and critical
sections for water depth in terms of overall performance.
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Figure 9. Discharge forecast from the probabilistic processing of DEWS/FEWS Po early warning
systems data.

On the other side, this statistic does not consider morphological variations at each crit-
ical point due to artificial (dredging) or natural (floods) actions. To reduce the uncertainty
related to those factors, methods that evaluate the daily probability based on the values of
the previous days should be elaborated.



Eng. Proc. 2024, 68, 64 7 of 11

3.2. Deep Learning Method for Water Depth Predictions

Deep learning methods are being experimented with to compare or integrate the risk
results obtained with the previous method. In particular, the first objective of the workplan
was to generate a predictor for each critical point of each stretch of the river. Thus, for each
vessel class, given a forecast of the water discharge of the next 10–15 days at each point,
the navigability of a stretch would be the worst prediction of the water depth among the
critical section results of that stretch.

The Long-Short-Term (LSTM) neural network [3] has been selected to generate the
models. Indeed, it is well known that the LSTM is effective for modeling and predicting
sequences, given its ability to retain information over extended periods. Other more recent
methods, like Transformer models [4], are also employed for numerical time series analysis,
but as they are especially effective in handling sequential data with complex dependencies
(e.g., many variables or global dependencies), they were not the first choice for these
experiments. Furthermore, recent works such as [5,6] have demonstrated that for river
water level prediction, LSTM models trained on water depth measurements and time
series alone may outperform other artificial neural network architectures that correlate
weather data (e.g., temperature and humidity) with water level observations. This may
be because the river’s water discharge prediction at some locations is the result of a much
more complex analysis that also considers non-local hydrological and climatic aspects.
Figure 10 illustrates the problem statement of the LSTM method.
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Figure 10. Problem statement representation of the deep learning method.

From the water depth forecast series, one can easily obtain the prediction of navigabil-
ity for each type of vessel, described in Section 2. However, the confidence level of such
prediction should be carefully analyzed to avoid both false positive risks (e.g., a vessel
is not allowed to move, but then the navigability conditions result to be safe) and false
negative risks (e.g., a vessel starts navigation in unsafe conditions).

The research questions posed to the ML-based forecast experiments are as follows:
[RQ1] How does the LSTM navigability predictor perform on the available real data?
[RQ2] What is the accuracy of the navigability results of the best predictor built?
[RQ3] How generalizable is a predictor to other critical sections or stretches of

the river?
The TensorFlow Python implementation of LSTM has been used to build the code

for training and testing the models. As it is common practice for this type of software
development, the best LSTM configuration has been decided empirically. The development
process of the models is an iteration over the quality of the predictions on the validation
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data by using various metrics, including accuracy (ACC score function) and f1. The general
process followed is illustrated in Figure 11.
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To answer [RQ1], this process was applied for several critical sections of the same
stretch and of different stretches, selected based on the quality of the input data (e.g.,
completeness). Among the experiments, the setting in Table 2 led to the most accurate
model for more than one critical section.

Table 2. Model configuration.

Parameter Value

Input dataset series water discharge series water depth
timeline: days from 1 January 2018 to 31 May 2022

window size 15

normalization z-score

LSTM sequential model settings

bidirectional layers of
1024, 512, 256, 128, and 64 units

adam optimizer, learning rate 0.002
20 epochs, early stopping

training-validation split KFold cross-validation,
20 splits

The model is trained on the two-input series (to learn patterns of correspondence
of their values), and the purpose of the resulting model is to take an input sequence of
some length for one of the two series (series water discharge in our experiments) and learn
to predict the corresponding values of the other series. The trained LSTM model could
be used to predict future values of both water discharge and water depth series. In this
study, the prediction of discharge is provided by the EWA system, which, as explained in
Section 2, is based on a numerical model.

A preliminary answer to [RQ2] is provided with the following results. An example of
the result of a critical section in the last 450 days of the dataset is shown in Figure 12. Please
note that, as specified in Table 2, the KFold cross-validation technique was used so that
the dataset was divided into “k = 20” subsets, and the model was trained and evaluated
20 times, using a different subset as the validation set in each iteration. The best model was
then chosen based on accuracy scores. For this critical section, the subseries of real water
depth of the last period were interesting as they featured the lowest values of the whole
historical series, hence the choice to use the KFold cross-validation technique.
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Figure 12. Water depth forecast vs. water depth observations for critical section 1 of stretch X. The
blue line indicates the lowest water depth before the last 100 days.

Figure 12 shows the vessel drafts and the f1 and accuracy values for the 140, 160,
and 180 cm classes. These lowest classes are the most critical for the confidence level of
the predictions for non-navigability, as these predictions overestimate much of the real
values and provide wrong negative estimates for the last 100 days (from February to May
2022). Indeed, from the analysis of the considered dataset, in this period, a similar decrease
pattern in water depth was not present beforehand. Expert knowledge of the management
of the infrastructure and/or a deeper investigation into weather and environmental aspects
may help to better interpret these results.

From the data analysis only, better estimates for navigability risks of the same classes of
vessels resulted in a critical section of another stretch of the river, as represented in Figure 13.
It can be noticed that there is a higher frequency of low values in the validation dataset.
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Figure 13. Water depth forecast vs. water depth observations for critical section 2 of stretch Y.

To address [RQ3], further tests should be made to search for models that can adapt to
different critical sections and/or stretches. A first investigation of the datasets leads to the
hypothesis that critical sections of the same stretch generally feature similar shapes (values
and variability). However, critical sections of different stretches may feature different
patterns to those used in Figures 12 and 13. The full datasets of the water discharge (blue
line) and water depth (brown line) normalized series are displayed in Figure 14.
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4. Conclusion and Future Work

In this paper, a real case study that requires the application of time series analysis and
forecast methods to build a digital twin for the navigability of free-flowing waterways has
been described. The problem is complex, so the challenge is to achieve reliable risk values.
The data exploration and the preliminary results of the LSTM-based method presented
in this paper look promising for that aim. However, further validation tests with real
data are required, and the navigability forecast from the water data should always be
complemented with further information, such as climate conditions and infrastructure
management operations.
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