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Abstract: Machine learning models such as artificial neural networks (ANNs) are becoming in-
creasingly popular in short-term water demand forecasting. This is because, despite their lack of
interpretability, ANNs are able to capture complex interactions between explanatory variables and
water consumption better than a traditional time series analysis or simple linear regression. In
this work, we forecast the hourly water demand of ten operational district metered areas using
optimal trees, a machine learning model which has been shown to combine the interpretability
of regression approaches and the accuracy of ANNs. We show that, compared to existing water
demand forecasting models, optimal trees offer valuable insights without sacrificing predictive or
computational performance.
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1. Introduction

Accurate short-term water demand forecasts are essential for developing effective
water distribution system operation and management strategies. While short-term water
demand forecasting has traditionally relied on time series analysis and regression models,
the past 15 years have seen a rise in more sophisticated machine learning methods, such as
artificial neural networks (ANNs)—see [1] for a recent review. Compared to a traditional
time series analysis, machine learning models can better represent complex interactions
between explanatory variables and water consumption. They are, however, more difficult
to interpret for water network operators. Even the large number of deep decision trees
within random forest approaches [2] still limits the ability of humans to use these models to
derive insights or a simple prediction logic. In this work, we propose to investigate recent
machine learning algorithms which combine the interpretability of regression approaches
and the accuracy of ANNs. In particular, we apply optimal regression trees to forecast
the hourly water demand of ten operational district metered areas (DMAs) located in the
northeast of Italy over a period of one week. We compare the results of the proposed
approach with alternative state-of-the-art water demand forecasting models and show
that optimal regression trees provide meaningful insights about short-term water demand
without sacrificing predictive or computational performance.

2. Materials and Methods
2.1. Optimal Regression Trees

Regression trees are a type of classification method where a data set is recursively
partitioned to yield a number of hierarchical, disjoint regions. A regression tree T is
composed of a set of branch and leaf nodes, TB and TL, where a split along a branch node
t ∈ TB is governed by parameters at ∈ Rn and bt ∈ R, and each leaf node l ∈ TL is
associated with a label cl . Consider, for instance, a data point (x, y) ∈ Rn ×R with features
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x ∈ Rn and a label y ∈ R. If x meets all previous conditions leading to a branch node t ∈ TB
and at

Tx < bt, the classification will follow the left branch down from node t (otherwise, if
at

Tx ≥ bt, it takes the right branch) and so on, until it reaches a leaf node l ∈ TL. We denote
this by c(x, T ) = cl , the final prediction returned by T for x and the misclassification error
for (x, y) is then given by

∣∣∣∣∣∣c(x, T )− y||2 .
Now consider a data set containing m observations (xi, yi), i ∈ 1, . . . , m, each with n

features xi ∈ Rn and a label yi ∈ R. The regression tree that best represents this data set
while maintaining low complexity corresponds to the solution of the problem:

minimize 1
m

m

∑
i=1

∣∣∣∣∣∣c(xi, T )− yi||2 + α
|T |
2

, (1)

where |T | represents the number of nodes in T ; (|T |/2 is the number of branch nodes in
T ); and α is a parameter penalizing tree complexity. Traditional heuristic methods (such
as, e.g., CART) solve (1) through a top-down, greedy approach. Instead, we propose the
implementation of interpretable AI’s optimal regression tree module [3], which relies on a
mixed-integer reformulation and global solution of (1) using the off-the-shelf mixed-integer
optimization solver GUROBI [4].

2.2. Feature Selection

Our forecasting model incorporates three main types of features—see Table 1. Tempo-
ral features aim to capture the inherent diurnal and cyclic patterns of water usage, while
weather variables account for the influence of environmental conditions. Our feature selec-
tion also includes previous (lagged) demand data, which represents the most important
explanatory factor of short-term water consumption according to the literature [2].

Table 1. Feature selection.

Category Description Features

Time Temporal (seasonal, monthly, weekly, and
diurnal) characteristics of the forecast period

Quarter, month
Day of week, day type
(weekend/holiday)
Time of day

Weather Raw data corresponding to the forecast
period collected from a local weather station

Air temperature
Humidity
Wind speed
Rainfall depth

Previous
waterdemand

Historical water consumption data
corresponding to the week preceding the
forecast period

1h lagged demand
24h lagged demand
168h lagged demand

2.3. Implementation Details

Our methodology leverages interpretable AI’s software modules [3] to (i) impute
missing data in the provided time series and (ii) solve Problem (1) with global optimality
for each of the ten operational DMAs considered in this study. For data imputation, we
implement the OptImpute module with the K-nearest neighbors objective function [5]. We
then solve Problem (1) using the OptimalTreeRegressor module with automatic complexity
parameter tuning and a maximum tree depth set to eight [6]. All interpretable AI software
is implemented in Julia 1.9.3 [7].

Since past consumption is an important predictor of short-term demand [2], our
approach combines three optimal tree models with prediction horizons of 1 h, 24 h, and
168 h using the previous demand features described in Table 1. This approach leverages
the most recent inflow data to improve forecasting performance over the first hour and day
of the overall (168 h) prediction horizon. We train our forecasting model using the latest
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inflow data with various window sizes, namely 1-week, 4-week, 26-week, and 52-week
windows. The different window sizes aim to mitigate possible trend changes in DMA inflow
(e.g. leakage, new development). The models are evaluated on three performance metrics:
(i) mean absolute error over a 24 h forecast (MAE-24 h), (ii) maximum absolute error over a
24 h forecast (MaxAE-24 h), and (iii) mean absolute error over a 144 h forecast (MAE-144 h).
For each DMA, we select the best model based on performance over a validation testing
week and engineering judgement.

3. Results and Discussion

The proposed method is applied to forecast the demand of ten operational DMAs
(DMAs A to J) over four validation weeks (W1 to 4) spanning from July 2022 to March 2023.
The resulting forecasting models can be found at https://github.com/bradleywjenks/
water_demand_forecasting.git (accessed on 9 September 2024). In most cases, we observe
that predicted demands align well with the actual demand profile of the DMAs—see,
e.g., Figure 1, which represents the forecast obtained for DMA E over W1. Table 2 summa-
rizes the cumulative MAE-24 h, MaxAE-24 h and MAE-144 h performance of the proposed
method over all ten DMAs. We observe that, except for W3, the performance of the method
is consistent over the different validation weeks. We suspect the poor performance in W3 to
be attributed to changes in demand behavior over the week preceding the forecast (winter
holidays), which are not explicitly accounted for in the temporal features of W3—this will
be the subject of future work. This observation is particularly pronounced for the peak
morning demand predictions and reflected by the MaxAE-24 h.
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Figure 1. Example of demand prediction forecast for DMA E over validation week W1. The
corresponding optimal tree is available at https://github.com/bradleywjenks/water_demand_
forecasting/blob/master/results_practice1/plots/dma_e_opt_tree_168h_train_4.svg (accessed on 9
September 2024).

Table 2. Results comparison between optimal regression trees and SARIMAX for the forecast of
10 DMAs *.

Validation Week Method MAE-24 h MaxAE-24 h MAE-144 h Combined Score

18 to 24 July 2022 (W1) SARIMAX 11.52 36.93 11.49 59.94
Optimal Trees 11.99 36.04 13.79 61.83

24 to 30 October 2022 (W2)
SARIMAX 11.29 30.13 14.49 55.90

Optimal Trees 10.25 29.26 14.68 54.09

09 to 15 January 2023 (W3) SARIMAX 10.09 33.11 11.70 54.90
Optimal Trees 15.34 50.66 16.23 82.23
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Table 2. Cont.

Validation Week Method MAE-24 h MaxAE-24 h MAE-144 h Combined Score

25 February to 04 March
2023 (W4)

SARIMAX 7.99 24.96 8.65 41.60
Optimal Trees 10.57 30.96 12.01 53.54

* The results presented here are the sum of the performance metrics for each DMA.

Moreover, we evaluate the performance of the proposed model against traditional
SARIMAX(4,1,3)(0,1,1,168) models which are trained, for every validation week and DMA,
on 26 weeks of historical demand data. (We use the SARIMAX function available in
‘statsmodels.tsa.arima.model.ARIMA’ from the package statsmodels 0.14.0 [8] in Python
3.9.18. and fit the models with the ‘innovations_mle’ method.) Table 2 shows that, except
for W3, the computed optimal regression trees provide comparable predictive performance
to the SARIMAX model. We also note that the optimal regression tree provides evident
implementation benefits over the traditional statistical approach. First of all, the training
time for the optimal regression tree is substantially shorter (approximately five minutes per
DMA, compared to SARIMAX’s thirty minutes to one hour training time per DMA). This
faster training time makes the optimal regression tree a viable method for near-real-time
online demand forecasting for water utilities. In addition to its efficiency, the optimal
regression tree provides greater interpretability. Although the trained SARIMAX models
return p-values and coefficients for the utilized features, these are still difficult to interpret
in prediction results for specific times of the day. In contrast, the optimal regression tree
presents a clear tree diagram with the selection of the features used and the decision split
required for a water demand forecast.

These findings underscore the promising practical advantages of optimal regression
trees over traditional statistical approaches, offering both efficiency and interpretability in
demand forecasting for water utilities.
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