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Abstract: This study introduces a methodology for the real-time detection and localization of bursts
in water transmission lines by comparing estimated and measured Hydraulic Gradient (HG) values
across pipe segments. Employing a deep learning approach, the method analyzes the complex
relationships between system states such as flows, HGs, pump and valve operations. The approach
capitalizes on the difference in HG values before and after a burst, enabling precise burst localization.
Tested on a real incident, the method proved effective in accurately identifying burst locations,
offering a practical solution for operators.
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1. Introduction

Water transmission lines (WTLs) play a pivotal role in delivering substantial volumes
of water; thus, their failure can significantly disrupt water supply and damage additional
infrastructure. Consequently, the rapid detection and accurate localization of bursts are
fundamental for an effective response strategy. Meanwhile, to enhance the reliability
of water supply, recent innovations in WTL design have focused on parallelization and
interconnections [1]. These advancements complicate burst localization due to increased
network complexity. Furthermore, although sensors generate large volumes of data, the
lack of data analysis methods suitable for real-world conditions leads operators to primarily
concentrate on basic monitoring and trend analysis [2].

Research on WTL bursts has primarily employed the transient method, which analyzes
the pressure waves from sudden flow changes such as a burst. However, despite their
precision, their implementation in real-world networks is challenging due to the need
for specialized equipment and numerous sample points [3]. Kim et al. [4] predicted the
pressure values at various points within complex WTLs using deep neural networks
(DNNs) to analyze data from sensors such as flows and pressures. Although this method
showed accuracy in detection, there were certain limitations in localization. Traditionally,
data analysis in this field has depended on pressure and flow data, while the hydraulic
gradient (HG) is mainly utilized for network construction and operation optimization [5,6].
Although a few researchers have applied HG for leak detection [7,8], it has generally been
implemented on simplified laboratory experiments that do not fully reflect real-world
system complexities. Addressing this identified research gap, this study introduces an
innovative method for real-time burst detection and localization by integrating HG data
with deep learning in complex WTLs.
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2. Materials and Methods

This paper proposes a method aimed at identifying and precisely locating leaks within
water transmission lines (WTLs). This approach hinges on the analysis of discrepancies
between measured and estimated HG values. It is designed for use in WTLs equipped
with pressure and flow meters at key points such as service reservoirs and water treatment
plants. Since historical data on WTLs rarely include burst incidents, the model learns from
regular operational data to spot unusual occurrences. The approach uses real-time data in
the real world, sent to SCADA systems every minute, for analysis.

2.1. Hydraulic Gradient

The Hazen–Williams equation (Equation (1)) indicates that the hydraulic gradient (HG),
which reflects the head loss ( Hi−H j

)
between nodes i and j per pipe length (Lij), changes

with the flow rate (Q). It includes the pipe diameter (D), flow rate (Q), a constant (K), and a
friction factor (C), showing that HG can act as an effective surrogate value for detecting the
flow change within a segment when the heads at both ends of a pipe are known.

HGij=
Hi−H j

Lij
≈ 10.666D−4.87C−1.85Q1.85 ≈ K × Q1.85 (1)

2.2. Deep Neural Network

Determining whether changes in the HGs result from operational adjustments due
to demand variations or a burst is essential. HG fluctuations are influenced by the pump
operations, flow rate and valve activities, necessitating an analysis of their complex interac-
tions. A deep neural network (DNN) with a multilayer perceptron (MLP) architecture was
used to analyze these relationships, estimating HGs in real time based on operational data.
Since the model aims to estimate the HG values for each segment, the number of models
corresponds to the number of segments. For example, to estimate a specific HG value, the
input data include the flow rate, pump and valve operations, and measurements from
other HGs. The model was trained for one hundred epochs, using data collected over three
weeks, with the first two weeks for training and the last for validation. This validation set
helped in hyperparameter tuning and evaluating the model’s performance.

2.3. Burst Detection and Localization

Burst detection is based on comparing actual HG measurements with estimates. A dif-
ference (HGdiff) exceeding a threshold indicates a potential burst. This threshold is set at
1.2 times the range observed during a three-week training and validation period. To en-
hance the accuracy and reduce false alarms, alerts are generated when multiple sensors
simultaneously detect anomalies or when a single sensor consistently surpasses the thresh-
old in three successive readings. The method evaluates HGdiff across segments, as outlined
in a sensor map. A positive HGdiff indicates increased flow from a burst, while a negative
HGdiff reflects reduced flow due to energy losses. This analysis enables the burst segment
to be pinpointed by observing the patterns of HGdiff, where the burst segment exhibits an
increase in HG, followed by a decrease in downstream segments.

3. Results

This methodology was examined on a WTL system with 3–4 parallel pipelines, as
illustrated in Figure 1. The network supplies two water treatment plants, two pump
stations, and one commercial facility (F14), typically operating 5 of 18 pumps at the intake
pump station. It is equipped with 12 pressure meters, and five flow meters.
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Figure 1. Sensor network map of the WTL. 

Based on pressure meter placement and pipe connectivity, it is divided into 13 seg-
ments (models) with the start and end pressure meters denoted as below.  

HGi_j = [HG1_2, HG2_3, HG2_4, HG2_5, HG4_5, HG4_6, HG6_7, HG7_8, HG8_9, HG9_10, HG7_9, HG5_11, HG11_12] 

This study analyzed data from 18 variables, incorporating four flow sensors, 13 HGs, 
and one variable for the number of operational pumps considering the parallel operation 
of pumps with identical capacity. Serving as an example, Figure 2 shows the HG changes 
in one (HG5_11) of the thirteen segments where the burst occurred. During the burst event, 
the actual HG values exhibited normal fluctuations, as seen in Figure 2a. However, the 
differences in HG estimated by the DNN model, which has three hidden layers and 64 
input nodes, was trained in under 7 min, and as shown in Figure 2b, were considerably 
larger, surpassing the threshold. Minor spikes were observed between the 6th and 17th 
day due to sudden flow changes at certain water treatment plants, yet these were negligi-
ble compared to the significant variation caused by the burst on the 21st.  
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Figure 2. Hydraulic gradient changes in the model (HG5_11): (a) Measured HG and estimated HG in 
the model; (b) HG difference and threshold in the model. 

To compare deviations across all MLP models, a heatmap (Figure 3) was used, high-
lighting values exceeding the threshold in bold. This heatmap indicates that alarms for 
two segments (HG4_5, HG5_11) were triggered at 01:18 on 21 October and that anomalies 
were detected in additional segments over time. The sensor map (Figure 4) represents the 
flow directions derived from the heatmap, using the red arrow for segments with HGdiff 
surpassing the threshold, indicating a potential increase in flow, and blue arrows for seg-
ments below the threshold, signaling a decrease. It shows a significant HG increase in 
three segments, suggesting that the burst flow primarily moved through HG2_5 and HG4_5 
to HG5_11. Subsequently, the connected segment, HG11_12, experiences a sharp decline in 
HG. Thus, this method accurately identifies HG5_11 as the burst segment, characterized by 
a pattern of HG increase followed immediately by a decrease in the subsequent down-
stream segments. 

Figure 1. Sensor network map of the WTL.

Based on pressure meter placement and pipe connectivity, it is divided into 13 segments
(models) with the start and end pressure meters denoted as below.

HGi_j = [HG1_2, HG2_3, HG2_4, HG2_5, HG4_5, HG4_6, HG6_7, HG7_8, HG8_9, HG9_10, HG7_9, HG5_11, HG11_12]

This study analyzed data from 18 variables, incorporating four flow sensors, 13 HGs,
and one variable for the number of operational pumps considering the parallel operation
of pumps with identical capacity. Serving as an example, Figure 2 shows the HG changes
in one (HG5_11) of the thirteen segments where the burst occurred. During the burst event,
the actual HG values exhibited normal fluctuations, as seen in Figure 2a. However, the
differences in HG estimated by the DNN model, which has three hidden layers and 64 input
nodes, was trained in under 7 min, and as shown in Figure 2b, were considerably larger,
surpassing the threshold. Minor spikes were observed between the 6th and 17th day due to
sudden flow changes at certain water treatment plants, yet these were negligible compared
to the significant variation caused by the burst on the 21st.
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Figure 2. Hydraulic gradient changes in the model (HG5_11): (a) Measured HG and estimated HG in
the model; (b) HG difference and threshold in the model.

To compare deviations across all MLP models, a heatmap (Figure 3) was used, high-
lighting values exceeding the threshold in bold. This heatmap indicates that alarms for
two segments (HG4_5, HG5_11) were triggered at 01:18 on 21 October and that anomalies
were detected in additional segments over time. The sensor map (Figure 4) represents
the flow directions derived from the heatmap, using the red arrow for segments with
HGdiff surpassing the threshold, indicating a potential increase in flow, and blue arrows for
segments below the threshold, signaling a decrease. It shows a significant HG increase in
three segments, suggesting that the burst flow primarily moved through HG2_5 and HG4_5
to HG5_11. Subsequently, the connected segment, HG11_12, experiences a sharp decline
in HG. Thus, this method accurately identifies HG5_11 as the burst segment, character-
ized by a pattern of HG increase followed immediately by a decrease in the subsequent
downstream segments.
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4. Conclusions

This study introduces a novel approach to detecting and pinpointing a burst in WTLs,
utilizing neural networks to analyze HG variations and their correlations with influencing
factors in the network. In contrast, traditional methods relying on pressure measure-
ments [4], which require the isolation of connected pipes around pressure sensors that
have an abnormal reading, segment-based burst detection enables precise localization,
isolating only the affected segment. This approach requires the strategic placement of
pressure meters at crucial points like branches and service reservoirs. Considering the
cost-effectiveness of pressure meters and their increasing deployment, this method holds
significant promise for widespread adoption and future advancements in the field.
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