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Abstract: The aim of the study is to train a machine learning (ML) model for drinking water
contamination detection and compare performance to statistical methods and existing anomaly
detection solutions. A pilot drinking water supply system was made and equipped with drinking
water quality sensors and a contamination dosing system. The results from this study demonstrated
that using the statistical Mahalanobis distance (MD) method to predict the classification of drinking
water measurements yields a 99% accuracy, 23% precision, and 28% F-score result (for wastewater
contamination); however, the ML model yields a 99% accuracy, 98% precision, and a 98% F-score result.
The results show that the application of ML methods can improve drinking water contamination
detection speed and accuracy.
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1. Introduction

Safe drinking water is a cornerstone of public health and well-being, yet its quality is
frequently compromised by contaminants ranging from biological pathogens to chemical
pollutants [1,2]. Traditional methods for detecting contaminants in water involve time-
intensive laboratory procedures that, while accurate, often fail to deliver immediate results
critical for prompt remediation actions. It is estimated that 8% of the EU population is
supplied by water from small waterwork companies that may struggle to provide effective
drinking water quality control [3]. In a study of New Zealand water supply systems, there
were at least seven cases of E. coli detected in drinking water that were largely dismissed
due to incorrect sampling techniques [4]. Machine learning (ML) algorithms have emerged
as powerful tools capable of enhancing our ability to detect and classify contaminants in
drinking water with speed and precision [5]. Neural networks (NNs) are one of them,
having proven themselves suitable for processing sensor data in anomaly detection.

There are several categories of drinking water contamination that must
be controlled [6]:

• Biological contaminants (bacteria, viruses, etc.);
• Inorganic contaminants (heavy metals, etc.);
• Organic contaminants (phenols, pesticides, etc.);
• Emerging contaminants (microplastics, pharmaceuticals, etc.);
• Radiological contaminants.
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In this study, a complex approach is taken by dosing contamination that may infiltrate
a water distribution network under degraded network conditions. The used contamination
may contain multiple categories of contamination. The changes in water quality parameters
are marked as anomalies and used to train a ML algorithm whose precision is compared
with the Mahalanobis distance (MD) method and the USEPA CANARY detection software
method [7,8].

2. Materials and Methods

For generating anomalies, a pilot water distribution system was created that imitates
a section of the water distribution network. The pilot system is made of 100 m of PVC pipe
with a 25 mm inner diameter. The system also has drinking water quality sensors outlined
in Table 1.

Table 1. List of drinking water quality sensors used in this study.

Parameter Sensor

Flow E+H Picomag DMA25
Pressure E+H Cerabar PMP11

Total organic carbon + temperature E+H Viomax CAS51D
Turbidity E+H Turbimax CUS52D

pH E+H Orbisint CPS11D
Oxidation–reduction potential E+H Orbisint CPS12D

Electrical conductivity E+H Condumax CLS21D
Flow cytometry cell counts bNovate BactoSense

The pilot water supply system assembly principal diagram is shown in Figure 1.
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• Ground water (concentrations of 0.1%, 0.5%, and 1%). 

Data are marked according to the experiment and theoretical water retention times, 
which are used to train an ML model. Contamination detection can be identified as a clas-
sification task, assuming each contamination type has its own footprint, differing from the 
drinking water. If there is no need to identify the contamination types but only to detect 

Figure 1. Pilot water supply system: (A) water from city water supply; (B) contaminant dosing
junction; (C) sensors at the end of the pilot system.

Experiments are conducted by dosing 3 types of contamination in 3 different concen-
trations, repeated 3 times.

• Waste water (concentrations of 0.01%, 0.05%, and 0,5%);
• Surface water (concentrations of 0.1%, 0.5%, and 1%);
• Ground water (concentrations of 0.1%, 0.5%, and 1%).

Data are marked according to the experiment and theoretical water retention times,
which are used to train an ML model. Contamination detection can be identified as a
classification task, assuming each contamination type has its own footprint, differing from
the drinking water. If there is no need to identify the contamination types but only to
detect the fact of contamination present in the system, the task can be simplified to a binary
classification task and further processed as an anomaly detection task.
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NNs are applied to process the sensor data. As stated earlier, the data contained
labels for readings with contamination–anomalies; thus, the supervised training model
was selected to train the multilayer NNs to forecast the probability of anomaly. The NN
structure used in the experiments contained 3 layers with 22,502 trainable parameters.

To distinguish critical anomalies from anomalies that were caused by some regular
fluctuations in the water supply system, two different approaches were used—a simple
cutoff line for minimal anomaly probability and a binomial event discriminator (BED) [9]
on which the USEPA CANARY method is based.

BED uses the binomial Equation (1) to determine whether there is an Event (anomaly)
currently in the system and if this Event is a Baseline Changer–critical anomaly that changes
the statistical baseline parameters of the sensor readings.

b(r, n, p) =
n!

r!(n − r)!
pr(1 − p)(n−r) =

n!
r!(n − r)!

prq(n−r) (1)

where
r—number of “failures” (anomalies) that occur during n trials;
n—number of repeated trials (time stamps);
p—expected probability of any one trial failing (of a reading to be an anomaly).

3. Results

The accuracy, precision recall, and F-score metrics for all three methods of anomaly
detection are shown in Table 2.

Table 2. Anomaly detection metrics by anomaly detection method.

Metric MD BED + NN NN

Accuracy 0.76 0.995 0.999
Precision 0.41 0.984 0.984

Recall 0.76 0.985 0.983
F-score 0.53 0.984 0.983

The BED + NN and NN anomaly detection metrics show significantly higher anomaly
detection metrics than the MD method. The BED + NN and NN methods show very
similar metrics.

4. Discussion

MD showed very poor performance in anomaly detection. It is possible that the
MD method could show better results in tasks where specific types of anomalies must be
detected. In this situation, the different types of contamination were grouped into one
class that may contain differing mean values and covariance. The NN method shows
good performance, which aligns with previous studies showing NNs’ adequacy for data
classification tasks; for example, a 95% F-score was demonstrated in another study [5].
Processing data using BED marginally improves the F-score and decreases accuracy.

5. Conclusions

Further research should be conducted by generating anomalies in different source
water settings and evaluating the performance of existing anomaly detection models.
Furthermore, evaluating the MD method in specific contamination detection may be
needed to rule out the viability of the method for contamination detection in drinking
water. Using neural networks and the binomial event discriminator for contamination
detection proved to be viable methods for high-accuracy contamination detection.

Author Contributions: Conceptualization and data analysis, V.U. and S.D.; expert review, J.R.;
software and data management, M.B.; conceptualization and organization of experiments, K.D. and



Eng. Proc. 2024, 69, 110 4 of 4

R.O.; project administration, D.Š.; data analysis and AI model, S.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research is funded by the Latvian Council of Science, project “Smart Materials,
Photonics, Technologies and Engineering Ecosystem” project No. VPP-EM-FOTONIKA-2022/1-0001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this article are not readily available because
the data are part of an ongoing study. Requests to access the datasets should be directed to the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hemdan, B.A.; El-Taweel, G.E.; Goswami, P.; Pant, D.; Sevda, S. The role of biofilm in the development and dissemination of

ubiquitous pathogens in drinking water distribution systems: An overview of surveillance, outbreaks, and prevention. World J.
Microbiol. Biotechnol. 2021, 37, 36. [CrossRef] [PubMed]

2. Paranthaman, K.; Harrison, H. Drinking water incidents due to chemical contamination in England and Wales, 2006–2008. J. Water
Health 2010, 8, 735–740. [CrossRef] [PubMed]

3. Gunnarsdottir, M.J.; Gardarsson, S.M.; Figueras, M.J.; Puigdomènech, C.; Juárez, R.; Saucedo, G.; Arnedo, M.J.; Santos, R.;
Monteiro, S.; Avery, L.; et al. Water safety plan enhancements with improved drinking water quality detection techniques. Sci.
Total Environ. 2020, 698, 134185. [CrossRef] [PubMed]

4. Graham, J.; Russell, K.; Gilpin, B. When the implementation of water safety plans fail: Rethinking the approach to water safety
planning following a serious waterborne outbreak and implications for subsequent water sector reforms. J. Water Health 2023, 21,
1562–1571. [CrossRef] [PubMed]

5. Muharemi, F.; Logofătu, D.; Leon, F. Machine learning approaches for anomaly detection of water quality on a real-world data set.
J. Inf. Telecommun. 2019, 3, 294–307. [CrossRef]

6. Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067.
[CrossRef]

7. Dejus, S.; Nescerecka, A.; Kurcalts, G.; Juhna, T. Detection of drinking water contamination event with Mahalanobis distance
method, using on-line monitoring sensors and manual measurement data. Water Supply 2018, 18, 2133–2141. [CrossRef]

8. Hart, D.B.; McKenna, S.A. CANARY User’s Manual Version 4.3.2; Sandia National Laboratories: Albuquerque, NM, USA, 2012.
9. McKenna, S.A.; Hart, D.; Klise, K.; Cruz, V.; Wilson, M. Event Detection from Water Quality Time Series. In Proceedings of the

World Environmental and Water Resources Congress 2007, Tampa, FL, USA, 15–19 May 2007. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11274-021-03008-3
https://www.ncbi.nlm.nih.gov/pubmed/33507414
https://doi.org/10.2166/wh.2010.127b
https://www.ncbi.nlm.nih.gov/pubmed/20705984
https://doi.org/10.1016/j.scitotenv.2019.134185
https://www.ncbi.nlm.nih.gov/pubmed/31505354
https://doi.org/10.2166/wh.2023.188
https://www.ncbi.nlm.nih.gov/pubmed/37902209
https://doi.org/10.1080/24751839.2019.1565653
https://doi.org/10.1007/s13201-016-0455-7
https://doi.org/10.2166/ws.2018.039
https://doi.org/10.1061/40927(243)518

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

