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Abstract: This paper examines the effectiveness of local and global models in predicting water
demand, employing data from the Battle of Water Demand Forecasting. Utilizing LightGBM models
under local, semi-global, and global settings, we analyze the performance of these models across
different configurations. The results suggest that inadequately optimized hyperparameters do not
always enhance model performance, but well performing hyperparameters can be appropriate for
different model types inside the domain of water demand forecasting. Semi-global and global models
frequently outperformed local models, underscoring the benefits of contextual information. Our
findings indicate that while semi-global approaches offer promising results, extensive tuning and a
strategic selection of a time series for modeling are imperative for forecasting accuracy.

Keywords: water demand forecasting; LightGBM; predictive modeling; global and local modeling;
time series analysis

1. Introduction

Accurate predictive models are essential in hydrological forecasting, especially for
predicting water demand. With the increasing worldwide need for water and the challenges
posed by climate change, advanced and dependable forecasting methods are increasingly
important. This paper explores the differences and effectiveness of global and local fore-
casting strategies in predicting water demand.

Central to this analysis are global forecasting models. These models stand out due to
their simultaneous use of multiple time series data during training. The primary objective
is to augment the quantity of training samples, thereby enhancing the accuracy of future
predictions [1]. Traditionally, these data groups were homogeneous in nature to optimize
forecasting accuracy. However, recent research has demonstrated the effectiveness of this
approach, even with heterogeneous datasets [2].

In contrast, local forecasting models prioritize specific, individual time series. They
are often favored for their precision and locality-specific accuracy, yet they may fall short
in encompassing the broader context that global models capture. This paper sets out to
compare these modeling strategies within the domain of water demand forecasting, aiming
to ascertain which approach is more effective and under what circumstances.

The paper is methodically structured into four main sections. Section 2 outlines the
materials and methods detailing the technical approach and the data utilized. Section 3
reveals the findings of our study. Finally, in Section 4, we conclude by discussing the
primary findings and exploring avenues for future research.

2. Materials and Methods

Our study employed data sourced from the Battle of Water Demand Forecasting,
comprising three distinct datasets. The primary dataset of net inflow data encompasses a
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series of ten time series, each representing water demand in various district types including
residential, hospital, and industrial areas. The objective of the battle was to forecast these
time series over four distinct timeframes, each spanning over 168 time steps—equivalent
to one week—with hourly data updates. The time series covered a period from 1 January
2021 at 12 a.m. to 5 March 2023 at 11 p.m.

Additionally, the dataset included supplementary data detailing holiday schedules
and weather conditions, extending from the same start date to 12 March 2023 at 11 p.m.
Holiday data were encoded in binary format, while the weather data comprised four
columns with floating-point values. Both the inflow data and weather datasets exhibited
missing values, which we addressed through various imputation techniques. For weather
data, Multiple Imputation by Chained Equations (MICE) [3] was employed. In contrast,
the inflow data gaps were filled using linear interpolation for single-point gaps and Partial
Sequence Matching (PSM) [4] for larger gaps. Prior to analysis, all datasets underwent a
standardization process to ensure consistency in the modeling phase.

Our analytical approach centered on the LightGBM model, with variations in predic-
tive strategies across three distinct settings:

e  Local Setting: Each of the ten time series were paired with a dedicated model, resulting
in ten distinct models. This approach focuses on the unique characteristics of each
district’s water demand.

e  Semi-Global Setting: Time series were grouped into four clusters. Four models in total
were trained, with each model responsible for forecasting the time series within its
respective cluster.

e  Global Setting: A single model was employed to predict all ten time series. This setting
evaluates the model’s capability to generalize across diverse datasets.

Alongside these settings, we also investigated the effects of optimized hyperparame-
ters on our models’ performance. The evaluation of these varied approaches was conducted
through backtesting, which involved the following:

e  Starting from the initial point in the test dataset, we forecasted the subsequent
168 time steps.

e These forecasts were compared against the actual values to determine the mean
absolute error (MAE) for that period.

e  The process was then repeated, moving forward in 24 h strides, until the end of the
test dataset was reached. This results in 192 separate evaluations.

This iterative method of evaluation provided us with multiple data points to ensure
the numerical stability and accuracy of our results.

3. Results and Discussion

The depicted workflow yielded MAE values for all 192 evaluations of each time series
using each model. The MAE values were averaged per time series to produce a single value
to assess the performance of each model on every time series. The error values are based
on standardized values to provide more comparability between series of different scales.

Figure 1 shows the results of these evaluations in tabular form, augmented with
color coding for better perceptibility. The first finding resulting from these values is that
the models trained with tuned hyperparameters (middle three rows) performed worse
than their untuned counterparts in most cases. Although surprising at first, this might be
attributed to several factors.

Due to time and computational constraints, the conducted hyperparameter tuning
only covered 103 evaluation trials for each model. This can already lead to promising
results—cluster 2 in the semi-global setting (DMAs D, E, G, and H) performed better using
the tuned parameters—but a more exhausting optimization can potentially further improve
the models’ performance.
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Model Type DMAA DMAB DMAC DMAD DMAE DMAF DMAG DMAH DMAI DMAJ Average
Local 04591 01989 02137 03075  0.1199 01607 02427 05465 03128 | 0o
no tuning (#0.2758) (0.0823) (+0.0657) (+0.0486)  (20.0405) (£0.0307)  (20.0527) 1807)  (20.1690) |

Semi-Global 0.4022 0.2084 0.2040 0.3041 0.3547 0.1618 0.3149 02762
no tuning (+0.2297)  (+0.0695) (+O 0770)  (+0.0390) (+0.0276)  (+0.0306) (20.1768) |
Global 0.4045 0.1956 0.1234 0.3636 0.1651 0.2202 0.5318 0.3133 02816
no tuning (£0.2382)  (x0.0721) | (=0.0845) (£0.0348)  (x0.0407)  (x0.0291) (x0.0448) (x0.2072) (x0.1847) |
Local 0.4540 0.1999 0.5408
tuned (+0.1855)  (+0.0733) (+0.1825)
Semi-Global 0.2166
tuned (¢0.0524)
Global 0.4168 0.1874 0.2526 0.3258 0.1629 0.3819 0.1811 ( 5 0.5855 0.3267 03098
tuned (#0.2037)  (x0.0761)  (+0.0728)  (+0.0428) (+0.0313) (+0.0614) (+0.0317) | (x0.0501) @(+0.2107) (+0.1534)
Local 0.1839 0.2324 0.3067 0.1263 0.5015 02810
tuned with best parameters! (£0.0617)  (x0.0493)  (+0.0425) (£0.1989)

Semi-Global 0.2106 0.2166

tuned with best parameters! 0) (£0.0735) (£0.0524)
Global 0.3866 3013 0.1248 0.3574 0.1566 0.2267 0.5142

tuned with best parameters! (+0.2144) (+0.0361)  (+0.0356)  (+0.0289)  (+0.0502)  (+0.2003)

! Best parameters found for any model (the cluster containing DMAs D, E, G and H in semi-global setting).

0.2738

Figure 1. Tabular results of model backtesting: averaged MAE (+ standard deviation), rounded,
color coded per series (red—high MAE, green—low MAE). The lowest average MAE per time series
is highlighted in bold.

Furthermore, the validation sets account for 10% of the total datasets. Due to the
limited timeframe covered by the data, this validation set represents a specific time of
the year—from June to August. The test sets cover the last 25% of the data. Coupled
with the subpar performance of the tuned models, this could indicate that the tuned
hyperparameters are especially fit for picking up the specific patterns in the summer
months but lack this fitness for the rest of the year. This can be further assessed using larger
datasets, e.g., allowing the evaluation set to cover an entire year of data.

For the second finding, using the hyperparameters found for the best performing
tuned model (the model for cluster 2 in the semi-global setting) on all the remaining models
surprisingly yields the best performance for most time series, as depicted in the last three
rows of the table depicted in Figure 1. This could suggest that searching hyperparameters
over a range of different settings can to some amount mitigate the need for an extensive
number of optimization cycles.

As for the last finding, focusing on the untuned models, the semi-global approach
produced the lowest average MAE over all time series. Their performance is generally
on par with their local and global counterparts, surpassing them notably for some series.
The local models only surpassed the other settings for a single time series (DMA F). This
indicates that the additional contextual information from the other time series does help
the LightGBM model with producing more accurate forecasts than local models. Clustering
the time series so that the most similar series add context to one another further improved
the performance of the forecasting models.

4. Conclusions

From the evaluations, it can be concluded that adding contextual information to a time
series can aid the forecasting performance, as on average the global and semi-global models
outperformed the local models in all settings. The semi-global cluster models were able to
outperform the global models in most cases, indicating the importance of providing context
using the most homogeneous series as possible. Especially when tuned by reasonable
hyperparameters, the semi-global models produced the lowest MAE values on average.

Computational and time constraints limited the amount of possible hyperparameter
tuning cycles. Nevertheless, although the hyperparameters used did emerge from a tuning
process on a specific cluster model, most other models still gained a performance boost
using these parameters. This suggests a high importance of a functioning combination
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of hyperparameters for the application of water demand forecasting. Inside this domain,
there seem to be no large differences in performance when applying hyperparameters that
proved to perform well on one model onto another model.

In addition to the computational and time constraints, the exceptionally high MAE
values for most tuned models might also partly be attributed to the specific structure of the
validation set and the structural differences between training, validation, and testing sets.
The limited timeframe of the total datasets (2 years and 9 weeks) restrains the possibilities
to provide adequate amounts of representative data to all the sets.

Beyond that, even without hyperparameter tuning, semi-global and global methods
performed well, again showing the improvement from adding context to forecasting
models. However, adding contextual time series indiscriminately—even from the same
domain—does not always yield a better performance, as can be seen from the superior
performance of semi-global cluster models over the global model in most cases. Thus, at
least for the water demand forecasting domain, “more” does not always equal “better”.

In conclusion, grouping similar time series can boost the performance of forecasting
models for a negligible computational cost.
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