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Abstract: Leakage is a major issue faced by utilities across the world. Background leaks constitute a
large component, and their small size makes it challenging to localize. This paper presents a hydraulic
model-based approach to localize background leaks. The proposed methodology clusters nodes into
leak groups using node-weighted spectral clustering and estimates background leakage in each leak
group using optimization. The algorithm successfully localized 113 out of 118 background leaks (no
leak size >0.28% of the bulk supply) and estimated the leakage amount using simulated data.
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1. Introduction

Leak management is a major issue faced by water utilities across the world with
water loss of up to 35% in developed [1] and more than 50% in developing nations [2].
Background leaks contribute to the major portion of these leaks and because of their
small size, repairing them would be uneconomical. Hence pressure management can be
considered an economical option for addressing background leaks [2] which requires an
understanding of spatial distribution of leakage in the water distribution network (WDN).
Since the background leaks and a single leak of the same leakage amount have different
impacts on the pressure sensors due to the distribution of energy loss, this makes it much
more challenging to localize background leaks. In the literature, numerous model-based
and data-driven approaches were proposed by researchers focusing on leak localization
using flow and pressure data [3,4]. But most of the methods in the literature, if not all,
focus on large leaks or bursts, and background leakage has received limited attention. This
paper presents a model-based approach for the localization and estimation of background
leakage that uses on-field flow and pressure data.

2. Methodology

The framework of the proposed methodology is shown in Figure 1.
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ter loss of up to 35% in developed [1] and more than 50% in developing nations [2]. Back-
ground leaks contribute to the major portion of these leaks and because of their small size, 
repairing them would be uneconomical. Hence pressure management can be considered 
an economical option for addressing background leaks [2] which requires an understand-
ing of spatial distribution of leakage in the water distribution network (WDN). Since the 
background leaks and a single leak of the same leakage amount have different impacts on 
the pressure sensors due to the distribution of energy loss, this makes it much more chal-
lenging to localize background leaks. In the literature, numerous model-based and data-
driven approaches were proposed by researchers focusing on leak localization using flow 
and pressure data [3,4]. But most of the methods in the literature, if not all, focus on large 
leaks or bursts, and background leakage has received limited attention. This paper pre-
sents a model-based approach for the localization and estimation of background leakage 
that uses on-field flow and pressure data. 

2. Methodology 
The framework of the proposed methodology is shown in Figure 1. 
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Figure 1. The framework of the proposed methodology.

2.1. Sensitivity Analysis

Sensitivity analysis is carried out to understand the sensitivity of nodal pressures to
leaks in the WDN. For this, leaks ranging between 0.1 and 2% of bulk supply are simulated
as pressure-dependent demands using emitters as shown in Equation (1)

Qleaki
= Ki ∗ Pn

i (1)
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In Equation (1), Qleaki
, Ki, Pi are the leakage simulated, emitter coefficient and pressure

at node ‘i’, respectively. The value of emitter exponent ‘n’ is fixed as 1 [5] since background
leaks are not necessarily circular. Leaks of varying sizes are simulated at nodes for com-
puting pressure sensitivity for the unit emitter coefficient using Equation (2) with ’no-leak’
scenario pressures as reference.

S =


∆p1
K1

· · · ∆p1
Kn

...
. . .

...
∆pn
Kn

· · · ∆pn
Kn

 (2)

In Equation (2), ∆pn and Kn are the pressure change and emitter coefficient of node
‘n’, respectively. The sum of all columns in S results in a column matrix, where each
row represents the sensitivity of a node for that scenario [6]. The sensitivity matrix S
is constructed for different values of the emitter coefficient at each node, and the mean
sensitivity for all scenarios is calculated and used as nodal weights for node-weighted
spectral clustering in the later stage.

2.2. Clustering of Nodes

The clustering is performed to group all nodes into leak groups. The similarity of
nodes is calculated using the calculated pressure sensitivity and connectivity of nodes [7]
as shown in Equation (3) for clustering.

Aij =

(
wi
di

)
+

(wj
dj

)
max

(
wi, wj

) i f aij ̸= 0 otherwise Aij = 0 (3)

In Equation (3), Aij is the similarity between nodes ‘i’ and ‘j’; wi is the weight of node
‘i’, i.e., pressure sensitivity; di is the number of pipes incident at node ‘i’. aij is 0 if nodes
‘i’ and ‘j’ are not connected and is 1 otherwise. Spectral clustering is performed using the
Python package sci-kit-learn [8] to cluster nodes using the nodal similarities as inputs. The
number of leak groups is fixed as the number of pressure sensors installed in the WDN.

2.3. Leak Localization and Estimation

For leak localization, an optimization problem (Equation (4)) is solved with the emitter
coefficient of each leak group as a decision variable, i.e., if there are leaks in a leak group
that create a detectable pressure drop, the algorithm predicts all nodes in the leak group as
leaky. A genetic algorithm is deployed to solve the optimization problem.

F = Σ
Npressure
i=1 wi

(
Pmeas

i − Psim
i

)2
+ Σ

N f low
j=1 wj

(
Qmeas

j − Qsim
j

)2
(4)

In Equation (4), Pmeas
i and Psim

i are the measured and simulated pressures of node ‘i’,
respectively; Qmeas

j and Qsim
j are the measured and simulated flows in pipe ‘j’, respectively.

3. Case Study and Dataset

The proposed methodology is demonstrated on a renowned L-town network with 33
pressure sensors (Figure 2) [9]. For the leak dataset, 7.5% of the pipes are assumed to be
leaky, and leaks are simulated using emitters at both the start and end nodes of the selected
pipes. The emitter is fixed so that no leak is bigger than 0.3% of the bulk supply (Figure 2).
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Figure 2. (a) L-town network; (b) simulated background leaks. 
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leakage. But for groups 4, 27, and 0, leakage is overestimated due to neighboring high-
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spite higher errors in a few groups, the proposed methodology performed well for the 
majority of the leak groups and hence benefits water utilities and our understanding of 
spatial leakage distribution, aiding in supply and leakage management decisions. 

Figure 2. (a) L-town network; (b) simulated background leaks.

4. Results

The contour map of nodal sensitivity values, clustering, and leak localization results
are shown in Figure 3. To partially account for inaccuracies in the hydraulic model,
the demands in the model are perturbed by 10% before use for leak localization. Nodes
associated with different leak groups are represented by distinct colors in the corresponding
Figure 3, with each leak group labeled at the top of its respective cluster.
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As shown in Figure 3, 113 out of the 118 leaks simulated are localized to their respective
leak groups. Figure 4 shows the leak estimation error for each leak group.
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Figure 4. Leak estimation error.

In the majority of leak groups, the error estimate is between 2 and 50% of simulated
leakage. But for groups 4, 27, and 0, leakage is overestimated due to neighboring high-
leakage groups causing increased pressure drops, a drawback of the methodology. Despite
higher errors in a few groups, the proposed methodology performed well for the majority
of the leak groups and hence benefits water utilities and our understanding of spatial
leakage distribution, aiding in supply and leakage management decisions.
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5. Conclusions

A sensitivity analysis-based node-weighted spectral-clustering method is proposed
for localizing leaks and estimating background leaks in water distribution networks. The
approach clusters WDN nodes into leak groups and identifies leakage within each group by
minimizing differences between simulated and observed flow/pressures. As demonstrated
on the L-town network using simulated data, the algorithm successfully localized 113 out
of the 118 leaks ranging from 0.14% to 0.28% of the bulk supply, aiding water utilities in
improved decision-making for WDN operation and leakage management.
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