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Abstract: Water management is vital for building an adaptive and resilient society. Water demand
forecasting aids water management by learning the underlying relationship between consumption
and governing variables for optimal supply. In this paper, we propose a week-ahead hourly water
demand forecasting technique based on deep learning (DL) utilizing an encoded representation of
historical supply data and influencing exogenous variables for a District Metered Area (DMA). We
deploy a CNN model with and without attention and evaluate the model’s ability to forecast the
supply for different DMAs with varying characteristics. The performances are quantitatively and
qualitatively compared against a baseline LSTM.
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1. Introduction

Water is one of the primary natural resources and has been an integral part of shaping
the current world as we know it. The need for access to water has had significant historical
importance and prevails as a key challenge, as instances of water shortage are on the rise
with climate change, urbanization, and changing demographics. With the drying up of
lakes and riverbeds, unpredictable and extreme weather conditions, depleting ground-
water levels, and increasing consumer needs (residential, agricultural, and industrial),
water demand management has come to prominence [1]. District Metered Areas (DMAs)
are a critical concept that enables the strategic management of utility supply areas that
allow for efficient monitoring of supplied and consumed resources. The advent of smart
meters provides access to data at a larger quantity and quality, and has enabled a deeper
understanding of consumer behavior, adding to the ability to better manage water as a
resource through techniques such as forecasting.

Time series forecasting is a regression task traditionally achieved through statistical
methods, and has witnessed a significant shift towards machine learning (ML) and deep
learning (DL) models in the past decade [2]. This transition is attributed to their capacity
to model nonlinear functions and capture intricate patterns within data. DL-based fore-
casting methodologies have showcased remarkable performance across diverse domains,
including utility demand forecasting [3]. An emerging approach combines advances in
signal processing with DL techniques to facilitate efficient modeling of complex time series
data from time-frequency representation for forecasting. These representations obtained
as a consequence of the Continuous Wavelet Transform (CWT) technique are scalograms,
which are analogous to an image where the coefficients are depicted in time and scale
dimensions, enabling multi-resolution feature representation of the time series [4]. These
multi-resolution features enable the leveraging of established DL techniques such as CNNs
for the downstream objective of forecasting.
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In this research, we evaluate a DL-based methodology aimed at multi-step-ahead
forecasting of water demand within DMAs with an approach that encodes historical data
into a time-frequency representation. Furthermore, we investigate the efficacy of integrating
self-attention mechanisms within the model architecture to better capture the nuanced
relationships between consumption behavior and exogenous variables. Finally, we conduct
a comparative analysis, assessing the performance of our proposed model against baseline
LSTM networks.

2. Materials and Methods

Let C(t, δ) represent the time series data encapsulating the hourly water supplied
(L/s) to DMA δ = [A, B, . . . , J] with each DMA concerning different consumer charac-
teristics along with the relevant weather data W(t). The dataset spans 117 weeks from 1
January 2021 to 31 March 2023. The water supply data and the weather data are analyzed
for temporal irregularities (such as daylight savings) and are adjusted to be temporally
consistent. For each DMA, a normalized weekly consumption profile with a zero-centered
mean is computed. Statistical outliers and missing values within the dataset are addressed
through rescaling and mean shifting of the identified consumption values, aligning them
with the respective minimum, maximum, and mean values of each week in C(t, δ).

For the task of forecasting yi =
[
xt, xt+1, . . . , xt+p

]
∈ Rp at time t, where p signifies

the prediction horizon, we partition C into N weekly samples denoted as Xi, with each
sample spanning from Monday to Sunday, where i ∈ [0, 1, . . . , N − 1]. Each sample
constitutes a set of consumption feature vectors represented as Xi =

(
xj
)

i ∈ R24×7 where
j ∈ [0, 1, . . . , 6]. The vector xj ∈ R24 encapsulates historical day-wise consumption data for
a week, such that at time t, xj =

[
xt−1−24.j, xt−2−24.j, . . . , xt−24−24.j

]
. Analogously, we derive

the set of exogenous weather features denoted as wj =
[
wt+24.j, wt+1+24.j, . . . , wt+23+24.j

]
with j ∈ [0, 1, . . . , 6] representing the weather conditions during the prediction horizon
at time t. The ambient temperature, holiday data, hour of the day, and day of the week
during the prediction horizon are recognized as potential exogenous variables.

To forecast for ŷi we adopt and adapt a deep learning model F [5] with a convolution
back-bone to process an image-like representation of time series features vectors. Let
Iin ∈ R24×N f eatures be the set of input feature vectors, where N f eatures is the number of
features. The input features are identified through correlational and statistical analysis
for each DMA. Through CWT, each feature in Iin is encoded as scalograms to obtain a
multi-dimensional representation and are consequently concatenated to produce a multi-
channel image-like representation of dimension 24 × 24 × N f eatures which acts as an input
the DL model F. The architecture is modified, as seen in Figure 1, with an addition of a
self-attention layer between the convolution and linear blocks and the ability to enable the
model to regulate weights in the latent space based on feature importance. The dataset is
divided into training and testing data in the ratio 80:20, and the training dataset is further
subdivided into training and validation datasets. The model is tuned for hyperparameters
and is trained with a learning rate of 0.001, MSE loss function, and a batch size of 64
until convergence.
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3. Results

The adopted wavelet-based DL method for forecasting is utilized to analyze the
impact of preprocessing steps, and features. While augmentation of the dataset to enrich
the number of training samples did not impact the forecasting performance, the approach
of filling in missing data through the mean-adjusted weekly load profile shows a significant
increase in forecasting performance. After curating the model, the quantitative forecasting
performance of each model is compared across different DMAs in Figure 2. As a baseline to
enable comparison, an LSTM is also used for forecasting. The results are also qualitatively
analyzed by selecting the two DMAs with the most and least MAPE metrics to understand
the nuances of the different models learning capacities. The qualitative plots are visualized
in Figure 3.
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4. Discussion

Through examination of Figures 2 and 3, it is apparent that the forecasting proficiency
of the model for predicting demand varies among different DMAs. Notably, a pronounced
contrast in forecasting accuracy is observed across the models deployed for DMAs serving
residential consumers within urban and rural areas. The MAPE metric for consumers in
the countryside exhibited a broader variation, ranging from 3% to 11% (DMAs A, B, and C),
whereas for DMAs E and G, which cater to consumers located near the city center, the error
fluctuated between 2% and 4%. A nominal forecasting performance of error of less than
10% was observed for most DMAs, except for DMA F, characterized by an error of 11%. The
model effectively captured the diurnal demand fluctuations during morning and evening
periods but faced challenges in accurately modeling demand variations throughout the
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daytime, as depicted in Figure 3b. While there is no significant disparity between the
wavelet models with and without attention, the attention-based model demonstrated faster
convergence and training compared to the standard model. Both models significantly
outperformed the baseline LSTM model.

5. Conclusions

The effectiveness of employing DL models utilizing time-frequency representation of
consumption data for water demand forecasting is assessed using real-world consumption
data with diverse characteristics. The DL model demonstrates its capability to produce
consistent predictions across all DMAs, exhibiting minimal variance. Urban areas and
industrial zones, characterized by strong periodic patterns in their time series data, are mod-
eled more effectively than agricultural and rural zones. In the latter, the model accurately
captures the pronounced diurnal pattern but struggles to capture variations throughout
the day. To enhance forecasting accuracy, future research could explore techniques such as
using pretrained models on similar datasets, ensemble modeling, or adopting multi-task
learning approaches to leverage similarities across DMAs.
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