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Abstract: State estimation techniques offer an effective approach for integrating information from
hydraulic models with sensor measurements, providing a more accurate representation of the system
dynamics. The accuracy of state estimation depends heavily on the reliability of sensor data, making
the identification of faulty sensors critical for decision-makers who rely on model estimates. This
study proposes a new approach for detecting faulty sensors in water distribution systems to mitigate
the adverse effects of incorrect measurements on operational decisions. We utilize the Extended
Kalman Filter as the state estimation method and introduce a masking approach for identifying
faulty pressure sensors. The effectiveness of the proposed approach is evaluated using a benchmark
network model, demonstrating its proficiency in detecting faulty sensor data.
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1. Introduction

Water managers need continuous and timely access to information on water distri-
bution system (WDS) states, including pressures and flows, for effective monitoring and
operations. Strategically deploying sensors throughout WDSs and integrating measured
data with hydraulic models yield valuable insights into real system conditions. State
estimation provides an effective approach to merge information from hydraulic mod-
els with sensor measurements, offering a more accurate and timely depiction of system
dynamics [1–4].

We utilize the open-source hydraulic solver PipeDream [5] to formulate a state-space
model of WDS hydraulics based on the Saint–Venant equations. The fusion of sensor
data with the hydraulic model is then implemented using the Extended Kalman Filter [6],
which accommodates uncertainties in both model estimates and sensor readings. However,
the accuracy of the state estimation relies heavily on the validity of the collected data,
making the reliability of the sensor data and identification of faulty sensors critical for
decision-makers.

We propose a masking approach to assess sensor reliability. Each sensor is individually
masked, and state estimates are derived using all other sensors in the network excluding
the masked sensor. Comparing these estimates with readings from the masked sensor
offers insights into sensor reliability. This research presents a foundational step toward by
establishing an online framework that enhances the robust observability and operational
efficiency of drinking water systems.
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2. Methods

The system states of a WDS include the heads at each node and the flows in each pipe.
The governing dynamics of a WDS may be expressed in terms of a state equation and an
observation equation:

xt+∆t = Atxt + Btut + vt
yt = Ctxt + wt

where xt is the state vector comprising heads at all nodes, ut is the vector comprising
demands at each node, At describes the interconnection between nodes and coupling
between heads and flows, Bt is the interconnection between heads and demands, vt is
the process noise of the model, yt is the observation vector, Ct is the observation matrix,
and wt is the measurement noise of the sensors. The state equation describes how the
internal system states evolve over time, while the observation equation describes the
observations of the system states (e.g., pressure sensor measurements). To assimilate the
sensor observations with model estimates, we employ the Extended Kalman Filter (EKF) [6],
which accommodates nonlinearities in the equations describing the WDS states by using
the Jacobian of the governing equations at each time step.

In this study, our focus is on pressure sensors installed at storage tanks and junctions
within the WDS. Various types of errors can occur in sensor readings [7]. The specific
faults we consider include: (i) base shift, where sensor readings have a constant deviation
from the ground truth; (ii) noise, where the sensor exhibits random noise exceeding the
allowable error range; and (iii) step drift, observed when sensor data suddenly increase or
decrease during a certain period.

To detect the faulty sensor, a masking approach is proposed. Each sensor is individu-
ally masked, i.e., in each iteration, the measurements from one sensor are considered to
be unknown, and state estimates are derived using all the other sensors in the network,
excluding the masked sensor. Comparing these estimates with readings from the masked
sensor, the most pronounced difference between estimates and readings is most likely
indicative of a faulty sensor. To evaluate the difference, we use the median value of the
absolute head difference over the entire period as the indicator.

3. Results

The PA1 WDS model is used to showcase the results of this study [8]. The WDS model
comprises 2 tanks, 399 pipes, and 337 nodes. Figure 1 illustrates the network schematic, with
red highlighted nodes denoting two tank sensors and green highlighted nodes indicating
the location of three sensors. The sensor data utilized in this study are generated from the
model by adjusting uncertain parameters such as demands at nodes and pipe roughness,
thereby reflecting the typical inconsistencies between the hydraulic model and the WDSs.
The assumed standard deviations of the measurement noise (sensor uncertainty) and the
process noise (model uncertainty) are set at 0.5 m and 0.005 m, respectively.
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Figure 1. Schematic of PA1 networks. Sensor locations are highlighted; tanks (red), inner nodes
(green).
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As illustrated in Figure 2, we consider a specific scenario where incorrect sensor data
are introduced at node 433, characterized by noise with a standard deviation of 5 m. By
masking (excluding) the sensor at node 433, we assimilate sensor data solely from all
other four sensors in the system. Subsequently, we compare the EKF estimates with the
measurements at node 433. From Figure 2, it is evident that the masked sensor at node
433 exhibits the greatest discrepancy between its measured values and our estimates.
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Figure 2. Time series results of heads at sensor locations. Hydraulic model estimates (blue), EKF
estimates (dotted black), normal sensor measurements (teal), and faulty sensor measurements (red)
with a noise level of 5 m standard deviation. The red boxed subfigure indicates that the sensor at
node 433 is masked.

By injecting the same error at node 433 and employing the same approach to all the
sensors, wherein each sensor is masked individually, we assimilate data from all other
sensors to derive estimated values and compare them with the masked sensor data. Given
the EKF’s capability to provide accurate estimates, a significant discrepancy between the
estimation and the masked sensor data suggests potential sensor faultiness. As depicted
in Figure 3, the difference between the estimates from EKF and the masked sensor data is
most pronounced for the sensor at node 433, precisely where erroneous sensor data were
introduced. In summary, in this specific instance, the application of EKF combined with
our masking operation effectively identifies the faulty sensor.
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To evaluate the effectiveness of our approach in identifying the faulty sensor under
various error types, including base shift, noise, and step drift, we applied the same method-
ology, injecting erroneous sensor data into the sensor at node 433. In Figure 4, we compare
the difference when masking different sensors under different error scenarios. For each
sensor (x-axis), the marker indicates the median head difference between the given sensor
data and the EFK estimates when the sensor is masked, and the gray boxplots indicate the
distribution of these differences when each of the other sensors is masked (one at a time).
The blue and the red markers indicate normal and faulty sensors, respectively.
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From Figure 4, it is evident that the median values of the faulty sensor at node 433 (red
marker) consistently exhibit the highest values compared to the other sensors, indicating
that for this case study, the approach consistently succeeds in detecting the faulty sensor
across all five error scenarios. In the scenario of step drift, the erroneous data persist for
only four hours. In the last subfigure of Figure 4, the median value of the correct tank
sensor 338 is very close to that of the faulty sensor 433. However, as depicted in the first
and the last subfigures of Figure 4, this approach also entails the risk of mislabeling when
the sensor error is relatively small or in short-lived drift cases.

4. Conclusions

In this research, we employ the EKF for state estimation in WDSs, integrating informa-
tion from hydraulic models with sensor measurements to provide an accurate representa-
tion of real-time system dynamics. We then propose a masking approach for identifying
faulty sensors, wherein each sensor is masked separately, and the predictions are compared
with measurements at the masked sensor. Through evaluation on a benchmark network,
the proposed approach demonstrates promising capabilities in detecting sensor faults
under various types of errors. Ongoing work includes considering multi-sensor faults and
assessing the proposed approach in more realistic settings.
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