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Abstract: This paper proposes a three (3)-step methodology to forecast the future water demands
of a water distribution network (WDN) composed of ten (10) district metered areas (DMAs). First,
pre-processing of the time-series data was performed through outlier elimination, imputation by
K-Nearest Neighbors (KNN), and statistical data scaling. Second, the model hyperparameters were
calibrated using Bayesian optimization. Third, Long Short-Term Memory (LSTM) coded as a Multi-
Step Multivariate Time-Series forecasting model was implemented. Our results indicate that the
proposed model produces accurate future water demands, suggesting that feasible short-term water
demand forecasting models require combining engineering judgment and computational tools to
achieve reliability.

Keywords: water demand; forecasting; DMA; KNN; LSTM; Bayesian optimization

1. Introduction

In an era where population growth and climate change intensify the imperative for
sustainable water resource management, the accuracy of water demand forecasts has
become crucial for the operational and strategic decisions of drinking water utilities [1].
This paper presents a pioneering methodology that enhances short-term water demand
forecasting within water distribution networks by integrating traditional engineering
insights with advanced neural network models. Focusing on ten district metered areas, the
study employs a three-step process involving meticulous preprocessing of time-series data,
calibration of model hyperparameters using Bayesian optimization, and the deployment
of a Long Short-Term Memory model tailored for multivariate time-series forecasting.
This work not only responds to the critical need for reliable water demand predictions
to optimize water distribution systems but also demonstrates the potential of combining
engineering judgment with computational tools, setting a new benchmark in water resource
management amidst the challenges of urbanization and climate variability.

2. Methodology

This study introduces an innovative approach to improve the short-term forecasting of
water demand within distribution networks, leveraging Long Short-Term Memory (LSTM)
models. Our method, designed around ten district metered areas (DMAs), consists of three
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pivotal stages, data preprocessing, hyperparameter tuning via Bayesian optimization, and
LSTM model deployment, for multivariate time-series forecasting. This tripartite approach
integrates engineering expertise with neural network models, aiming to set new standards
in water resource management amidst the challenges of climate change and urbanization.

2.1. Preprocessing

The initial stage focuses on data preparation, crucial for the effectiveness of the LSTM
algorithm. This process involves outlier detection, missing value imputation, and data
normalization. Outliers are identified and removed based on domain-specific knowl-
edge, ensuring that the data accurately reflect stable consumption patterns typical within
DMAs [2]. We employed K-Nearest Neighbors (KNN) for imputation [3], leveraging
its simplicity and resilience to noise, thereby maintaining the integrity and coherence
of our dataset. Data normalization is achieved through the min–max scaler technique,
standardizing the input features to scale the data within a specified range.

2.2. LSTM for Water Demand Forecasting

LSTM, a variant of Recurrent Neural Networks (RNNs), is employed for its superior
ability to process and forecast complex multivariate time-series data, a capability crucial
for accurately predicting water demand in district metered areas (DMAs) [4]. Unlike
traditional RNNs, LSTM is designed to overcome the limitations associated with the
vanishing and exploding gradient problems through its unique architecture, enabling it to
retain information over longer sequences effectively [5].

To enrich the forecasting model, we integrated a Multi-Step Multivariate Time-Series
approach, leveraging weather data and other relevant variables over the observed period
as dependent factors. Utilizing the Fourier transform, we dissected time variables to
highlight both short- and long-term patterns. This methodology enables the segmentation
of consumption patterns into distinct signals, factoring in holidays and outlier consumption
behaviors, with a keen focus on DMAs exhibiting non-seasonal or abrupt pattern changes.

2.3. Hyperparameter Optimization and Model Enhancement

Our LSTM model’s accuracy is enhanced through two key methods: incorporating syn-
thetic data and applying Bayesian optimization for fine-tuning [6]. We enhance the model
with synthetic data that simulate both typical and rare water usage events, broadening its
understanding of possible demand patterns. This is crucial for adjusting to unusual data,
like the 2021 pandemic’s impact, ensuring reliable predictions across various scenarios [7].
By using probability distributions that match observed trends, our synthetic data accurately
represent real-world demand patterns, from regular to exceptional.

Moving beyond traditional tuning, we used Bayesian optimization to efficiently find
the best model parameters. This method improves upon past results to hone in on the
most effective parameter sets, enhancing model performance while reducing the need for
extensive computations. It uses a smart balance of past performance analysis and new
parameter exploration to streamline the optimization process. Together, these approaches
not only sharpen the LSTM model’s forecasting accuracy but also equip it with the ability to
navigate the complex dynamics of urban water demand forecasting with greater precision
and less computational demand.

3. Results

Our results, derived from applying the proposed methodology over four evaluation
weeks (W1–W4), illustrate significant strides in water demand forecasting accuracy for
ten district-metered areas (DMAs). By custom-tuning the parameters for each DMA, we
tailored our approach to enhance prediction precision for each area’s unique net inflow
(Qnet) time series.

Table 1 encapsulates the forecasting performance across all DMAs, showcasing a
notable trend: as the Determination Coefficient (R2) for each DMA increases, indicating
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better model fit, the Mean Absolute Percentage Error (MAPE) and Root Mean Squared
Error (RMSE) concurrently decrease. This inverse relationship underscores our model’s
reliability, accurately mirroring the intricate behavior of water demand across diverse
urban contexts.

Table 1. General metrics of the forecasted water demands along evaluation weeks W1–W4: De-
termination Coefficient (R2), Mean Absolute Percentage Error (MAPE), and Root Mean Squared
Error (RMSE).

DMA A B C D E F G H I J

R2 (—) 0.78 0.74 0.82 0.83 0.92 0.60 0.87 0.92 0.66 0.81
MAPE (%) 12.26 4.34 10.73 6.93 3.54 8.03 5.67 10.91 5.64 6.27
RMSE (—) 0.92 0.51 0.39 2.75 4.24 1.31 1.92 3.50 1.73 1.70

The Determination Coefficient (R2) consistently exceeded 0.70 for most DMAs, affirm-
ing the model’s capability to closely predict actual water demand patterns. Exceptions were
noted in DMAs F and I, attributed to their unique geographic and functional characteristics—
DMA F’s suburban makeup and DMA I’s proximity to commercial and industrial activities
near the port. The slight discrepancies in forecasting accuracy for DMAs F and I highlight
the model’s sensitivity to the varied water usage patterns characteristic of non-residential
areas. These findings signal the need for further model refinement to better account for the
diverse factors influencing water demand in such distinct settings.

Figure 1 shows the water demand time series and the correlation curves of the best-
performing DMAs along evaluation week W4. The water demand time series and the
correlation curves consist of the predicted net inflows (Qnet) obtained for week W4 and the
net inflows (Qnet) of the week previous to W4 (W40).
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Figure 1. Water demand time-series and correlation curves of the best-performing DMAs in evaluation
week W4: (a) DMA H, R2 = 0.925; (b) DMA E, R2 = 0.917.

From Figure 1, note that all previous affirmations hold since the predictive outputs
of the model were able to capture the general demand patterns of the shown DMAs
while a strong correlation between net inflows (Qnet) was preserved along any evaluation
week of this study. Indeed, the model is sensible enough to capture the studied water
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demand patterns, i.e., water demand peaks, the week/weekend transition, and the general
curve characteristics.

4. Conclusions

This study proposes the use of an AI model to represent and predict the water de-
mands of the DMAs of a water network considering seasonal patterns, including daily
consumption characteristics and non-conventional days such as weekends or atypical con-
sumption. The model obtained a prediction of four non-continuous weeks throughout the
years 2022 and 2023. The performance metrics reported a MAPE between 3.54 and 12.26%
and an RMSE between 0.39 and 4.24. Since the raw weather data (temperature, rainfall,
depth, air humidity, and wind speed) were not sufficient for training the neural network,
a seasonal decomposition was performed to provide additional layers in the model. For
future research, the Prophet algorithm can be used as it is an additive model that describes
the long-term behavior and seasonality of the series and provides signals about outliers.
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