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Abstract: Accurate urban water demand (UWD) forecasts are key to the effective management
of water distribution systems. This research explores the potential of encoder–decoder models,
specifically sequence-to-sequence (S2S) deep learning models, for UWD forecasting. Two models
were developed as follows: one based on long short-term memory (LSTM) networks and another
using transformers. The models were trained on data from ten district metered areas (DMAs) in
Northeast Italy. The results confirmed that the transformer models consistently outperformed the
LSTM models across all DMAs, with an average (across all DMAs) improvement in mean absolute
error of 15.3%.
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1. Introduction

Accurate urban water demand (UWD) forecasts are necessary for the effective man-
agement of water distribution systems (e.g., [1,2]). Various data-driven methods have been
applied for UWD forecasting, such as auto-regressive integrated moving average, artificial
neural networks, and support vector regression [1]. However, deep learning (DL) models,
such as long short-term memory networks (LSTMs) [3], have shown tremendous success
in capturing the non-linear relationships between UWD and explanatory variables (e.g.,
precipitation, air temperature) that evolve through time, outperforming other machine
learning and statistical methods [2].

Sequence-to-sequence (S2S) models are a specific type of encoder–decoder (ED) model,
where a sequence of inputs (e.g., meteorological variables) of arbitrary length are mapped to
the designated sequence target (e.g., UWD). ED frameworks excel in time series forecasting
because they capture complex relationships among time series [4]. Unlike simpler models,
ED frameworks separate the encoding of input data (capturing local factors) from decoding
it into the desired output (e.g., UWD). This flexibility is further enhanced by the freedom to
choose any neural network for the encoder and decoder, allowing researchers to tailor the
model to the specific complexities of the forecasting task [5].

While S2S models have been adopted in water resources for various tasks, such as
rainfall–runoff prediction [6], a thorough examination of the efficacy of such models for
UWD forecasting has yet to be investigated. Furthermore, transformers that have shown
outstanding performance in fields such as language modeling [7] are yet to be explored
for UWD forecasting. Hence, this research explores two S2S model types, LSTM- and
transform-based EDs, for multistep ahead (24 h) UWD forecasting.

The rest of the paper is structured as follows: Section 2 introduces data adopted for
model development and evaluation. In Section 3, the developed models are introduced.
Section 4 provides the results, followed by Section 5, where the paper is concluded.
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2. Data

Data from the Battle of Water Demand Forecasting as part of the third WDSA-CCWI
Joint Conference were used for model development and assessment. These data include
UWD ( L

s ) from ten district metered areas (DMAs) in Northeast Italy (Europe), as well
as meteorological variables, rainfall (mm), air temperature (°C), air humidity (%), and
windspeed ( km

hr ). Missing data were replaced by the median value of the respective variable.
The data were collected on an hourly basis, covering from 1 January 2021, 12 AM, to
24 July 2022, 11 PM, resulting in 13,679 data samples. The data were split into three sets:
training (80%), validation (10%), and testing (10%). The training and validation sets were
used for optimizing the network parameters (weights and biases) and hyperparameter
tuning, respectively. The test set was solely used for model evaluation, reflecting out-of-
sample performance. The results provided in Section 4 are associated with the test set, i.e.,
the portion of the data unseen by the model during training.

The inputs to the models included the following: lagged meteorological variables
and UWD. A lookback period of 14 days was selected (covering two weeks) to produce
the lagged meteorological and UWD variables. Therefore, the input data were lagged
for 336 h. The target was set as the UWD for the next 24 h (i.e., a vector of length 24).
Hence, for a given model (LSTM or transformer), all the forecasts for the next 24 h were
obtained simultaneously.

3. Methodology
3.1. LSTM

UWD data, with their abrupt changes, pose a challenge for traditional data-driven
models. Recurrent neural networks (RNNs) were specifically designed to process temporal
dynamics, making them well suited for forecasting complex, non-linear relationships
among time series. However, traditional RNNs face limitations with long sequences.
However, LSTMs, introduced by [3], addressed this issue by controlling information flow
within the network, allowing them to model the complexities of time series effectively. In
this work, two distinct LSTMs are adopted in the encoder for processing the input data
sequences, one for meteorological variables and the other for processing UWD. The outputs
of the LSTMs are passed to a dense network (DN). The decoder, a LSTM-DN, processes
the output (encoded values) of the encoder, the meteorological variables, and the average
UWD associated with the forecast dates. The outputs of the decoder are UWD forecasts for
the next 24 h. More information on LSTM-based ED can be found in [4].

3.2. Transformer

The transformer model had a similar structure to the LSTM-based ED models, where
the only difference is that transformer encoders were used instead of LSTM blocks. The
transformer architecture, introduced by [8], revolutionized sequence modeling by over-
coming the limitations of RNNs in handling long sequences. Unlike RNNs, which process
data sequentially, the transformer employs a self-attention mechanism. This mechanism
allows the model to attend to all parts of the input sequence simultaneously, eliminating
the need for recurrent layers and enabling efficient sequence processing. The self-attention
mechanism generates a condensed representation capturing the entire sequence’s essen-
tial information through a series of calculations involving query, key, and value vectors.
This condensed representation makes the transformer adept at tasks requiring analysis of
long-range dependencies, such as time series forecasting and classification tasks [9].

3.3. Training and Forecast Evaluation

Two different strategies were tested for training the models. In the first strategy, a
model was trained for each DMA. In the second strategy, a single model was trained
for all DMAs and then fine-tuned for each DMA. Validation results confirmed that the
second strategy resulted in considerably more accurate forecasts for both model types
(LSTM and transformers). Consequently, the results associated with the latter strategy are



Eng. Proc. 2024, 69, 41 3 of 4

presented. A dynamic learning rate was adopted, starting from an initial value of 0.001.
The learning rate was halved after ten epochs if the validation loss did not decrease. A
maximum of 500 epochs was considered. The Adaptive Moment Estimation (Adam) [10]
was used to minimize the loss function, mean squared error. The DL model development
was achieved using custom scripts in Python 3.10, leveraging the Keras 2.0 library with
TensorFlow backend.

4. Results

For each DMA, the forecasts for each of the 24 h were evaluated using deterministic
metrics, modified Kling–Gupta efficiency (KGE), Nash–Sutcliffe efficiency (NSE), and mean
absolute error (MAE). The average of each metric across 24 h is presented in Figure 1.
The results confirm that the transformer models outperformed the LSTM models based
on all three metrics and for all DMAs. The results reveal that both models achieved
good forecasting accuracy (NSE > 0.6) for all DMAs except one. Both models showed
relatively poor performance in DMA 6, the suburban district. Due to the S2S structure of
the models, no considerable accuracy drop was observed between the 1 and 24 h forecasts.
The maximum drop in accuracy between the 1 and 24 h forecasts was associated with the
transformer model in DMA 6, where a decrease in KGE of 2.8% was observed. Overall,
transformers improved the MAE by 15.3% compared to LSTM across all DMAs.
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5. Conclusions

This study investigated the application of S2S DL models for 24 h ahead UWD forecast-
ing in ten DMAs located in Northeast Italy. The following two S2S models were developed
and deployed: LSTM- and transformer-based models. The transformer-based model consis-
tently outperformed the LSTM models across all ten DMAs. These findings emphasize the
significance of evaluating novel DL models, such as transformers, to ensure accurate UWD
forecasting. Given the promising results presented herein, transformers are recommended
when exploring DL models for forecasting UWD in other water distribution systems.
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