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Abstract: The current paper presents a forecasting methodology for short-term water demand
forecasting in the context of the Battle of Water Demand Forecasting. The methodology considers
five distinct forecasting techniques, which are compared in terms of their forecasting ability for a
preceding period, typically spanning a day or a week. The best-performing model is identified
through error assessment between model predictions and actual measurements. This model is
finally used to estimate the values for the forecasting horizon. This methodology directly considers
the importance of tailoring the model to the specific case study and objectives. However, it is
computationally intensive and relies on the fact that there will be not much variance between the
preceding period and forecasting horizon results.

Keywords: model selection; short-term forecasting; water demand

1. Introduction

The sustainable management of urban water supply systems (UWSS) often relies on
water demand forecasts for a range of purposes, namely, system design, maintenance,
and operation. Water demand forecasting models can be distinguished according to the
forecast horizon (i.e., the length of time for which forecasts are generated) and frequency
(i.e., the time step at which water demand predicted is generated within the forecasting
horizon) [1]. In broad terms, long-term models generally provide demand forecasts on
a yearly or monthly basis with a forecasting horizon ranging from years to decades and
are mainly used for planning and infrastructure design. Short-term models, by contrast,
forecast water demand over more limited time horizons, ranging from days to months,
with a time step ranging from daily to sub-hourly, and are mainly used for operation
and management purposes [1,2]. As noted by Ghalehkhondabi et al. [3], neural networks
and pattern-based methods are more commonly used for short-term forecasting, while
econometric models are usually used for long-term forecasting.

In recent years, a plethora of research has been published related to forecasting meth-
ods for urban water demand. Niknam et al. [4] reviewed over 100 short-term water demand
forecasting methods published between 2010 and 2022 and concluded that there is no uni-
versal response to the question of what method one should use. In other words, the most
adequate method should be selected among those showing better performance with respect
to both the available data (e.g., the existence of climatic data) and the objectives of the
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forecast (e.g., average or peak water demand). It was also found that a reasonable number
of papers based their analysis on traditional time-series analysis (e.g., ARIMA models) and
regression models (including multivariate regression, decision trees, and random forests).
These models have sufficient predictive ability for a range of operations in UWSS, whilst
remaining interpretable and explainable to water utilities, specifically when compared with
complex but less interpretable forecasting models such as the ones based on artificial neural
network architectures or metaheuristics algorithms.

The current paper presents a forecasting methodology in the context of the Battle of
Water Demand Forecasting (BWDF). The proposed methodology includes both pattern-
based and regression techniques to improve the accuracy of the estimated values. Prior
to forecasting, a pre-processing of the data and a model selection process is undertaken,
wherein the best-performing model is identified through error assessment between model
predictions and actual measurements from a preceding period, typically spanning a day
or a week. This ensures that the optimal model, along with its parameter configuration,
is chosen for forecasting considering the diverse variables such as area characteristics
(e.g., proximity to maritime ports or city centers) and the importance (or not) of including
weather data. The remainder of the paper is organized as follows. Section 2 presents
the proposed methodology with a brief explanation of the distinct techniques and their
respective parameters. Section 3 presents the main results for the four successive deliveries
of the BWDF. Finally, Section 4 presents a discussion of the main benefits and drawbacks of
the proposed methodology.

2. Materials and Methods
2.1. General Framework

The proposed methodology is mainly driven by one of the major problems faced by
water experts, namely, which forecasting model should be used for a given specific case
study, and which model parameters should be used. To face this problem, the assumption
that no specific model will be the best in all possible situations is taken. This is carried out
by considering five distinct forecasting techniques and by comparing their prediction ability
for a preceding period, typically spanning a day or a week. The model presenting the best
prediction ability for the preceding period is selected for forecasting. It is assumed that
a forecasting model that presents good results for the preceding period will also present
good results for the forecasting horizon.

Given the objective of the BWDF of forecasting a week of hourly water demand values
for a specific case study, whilst using a given number of historical days of hourly water
demand (e.g., one or two months), a general framework can be outlined in the following
five steps:

1. Pre-processing: The data provided present missing values that limit the range of
techniques that may be directly applied. The first step consists of pre-processing of
seasonally decomposed missing value imputation using the R package imputeTS [5].

2. Model generation: The second step comprises the generation of distinct models for
forecasting. This study uses five distinct forecasting techniques (as presented in 2.2).
Each of these techniques contains specific parameters. Thus, a range of parameter
combinations is devised for each technique. These parameter variations result in a set
of candidate models for each forecasting technique.

3. Predicting of preceding period (hindcasting): Each of the candidate models generated
in Step 2 is used to forecast a preceding period (e.g., a day or a week) leading up to
the desired forecasting horizon. This step involves training the models on historical
data preceding the target period, thereby assessing their predictive performance in a
near-term context. Notably, this process may demand considerable computational
resources, particularly when dealing with numerous parameter combinations or
computationally intensive forecasting techniques.

4. Model evaluation and selection: The predicted values in Step 3 are compared with
the real values using the mean absolute error, thus enabling ranking of each model
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in terms of predictability performance in a near-term context. The model with the
smallest error is selected for forecasting.

5. Forecasting: The model selected in Step 4 is finally used to estimate the values for the
forecasting horizon. This step involves training the model on historical data preceding
the forecasting horizon.

2.2. Forecasting Techniques

Five distinct forecasting techniques are used in this study. Each technique (and its
possible parameters) is briefly presented in the remainder of this section.

• The Naïve technique considers patterns either on a day-by-day basis or differentiating
weekdays from weekends. For each timestamp in the forecast period, it identifies
relevant historical data blocks based on the chosen pattern. Then, it calculates the
predicted value using either the average, median, or exponentially weighted moving
average of the historical data block. The configurable parameters are the duration of
historical data (e.g., one or two months), the pattern type (day-by-day basis or differ-
entiating weekdays from weekends), and the type specified forecast type (average,
median, or exponentially weighted moving average).

• The support vector regression (SVR) technique uses multiple regression models to
perform the forecast. Initially, it prepares the historical data by creating lagged values
and by categorizing the data into weekdays, Saturdays, and Sundays/holidays. For
each timestamp in the forecast period, a SVR model is trained using the relevant blocks
in the prepared historical data. The trained SVR model is then used to forecast that
specific timestamp. The configurable parameters are the duration of historical data,
and the number of lagged values (e.g., previous 5 or 10 measurements at the same
time of the day for the same type of weekday).

• The Quevedo technique firstly estimates the total daily volume for the day for which
measurements are to be estimated. This is conducted using an ARIMA model. Then,
this total daily volume is distributed to hourly values based on the average pattern for
this weekday. The configurable parameters are the duration of historical data and the
pattern type (day-by-day basis or differentiating weekdays from weekends/holidays).

• Distinct from previous techniques, the XGBoost technique considers meteorological
data (precipitation, air temperature, air relative humidity, wind speed). It firstly
prepares the historical data with the necessary features (e.g., hour of the day, day
of the week, weather variables, or holiday indicators). Then, a regression model is
trained using 80% of the historical data, with the remaining 20% being used to monitor
training progress and prevent overfitting. The trained regression model is then used to
forecast each specific timestamp (note that expected weather data are required in this
phase). The configurable parameters are the duration of historical data and multiple
XGBoost-specific parameters (e.g., learning rate, number of estimators, max depth,
and number of early stopping rounds).

• The long short-term memory technique (LSTM) is a recurrent neural network that
memorizes long-term dependencies of time series [6]. The configurable parameters
are the duration of the historical data, some parameters related to the general neural
network algorithm (e.g., dropout, batch size, number of units), and LSTM-specific
parameters (e.g., window length). The LSTM with weather data works by using
two LSTM modules: the first module deals with the historical water demand data,
using past observations with a time horizon equal to the length of the window; the
second module considers meteorological data (precipitation, temperature, relative
humidity, wind speed) with a shorter window length horizon [7]. The configurable
parameters are the same as for the LSTM, but in this case both for the water and the
meteorological data.
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3. Results

Table 1 presents the selected forecasting model for each of the DMAs and each of
the delivering week (i.e., W1 to W4). It is possible to conclude that no unique technique
presents the best solution for every situation. For instance, in W1, no technique was used
in more than three DMAs. SVR is used in 6 out of 10 DMAs in W2 and 5 out of 10 DMAs in
W3. On the other hand, it is used only once in W4, whilst the Naïve method is used in 5 out
of 10 DMAs. Furthermore, the parameters for the same DMA vary considerably (note that
these data are not included in the paper due to space limitations). For instance, DMA F
uses either 120 historical data days in W1 and 30 in W4. On the other hand, DMA I always
resort to 30 historical data days throughout W1-W4.

Table 1. Selected forecasting model for each of the DMAs and each of the delivering weeks.

Week DMA A DMA B DMA C DMA D DMA E DMA F DMA G DMA H DMA I DMA J

W1 Naïve Quevedo Naïve SVR XGBoost Naïve Quevedo SVR Quevedo XGBoost
W2 SVR SVR SVR XGBoost Quevedo XGBoost SVR XGBoost SVR SVR
W3 XGBoost SVR Quevedo Naïve SVR XGBoost SVR SVR SVR Naïve
W4 Naïve Naïve Naïve LSTM-W Naïve LSTM-W Naïve SVR LSTM-W XGBoost

4. Discussion and Conclusions

The current paper presented a methodology for water demand forecasting combining
multiple techniques to capture different aspects of the time series data. By hindcasting, it
is possible to assess the predictive performance of distinct forecasting models in a near-
term context. Finally, the model with the best predictive performance (i.e., smaller error
between estimated and real values) is selected to perform the forecast. As drawbacks, it
is highlighted that (1) the computational cost can be relevant depending on the complex-
ity of the forecasting techniques and (2) there is no guarantee that a forecasting model
that presents good results for the preceding period will also present good results for the
forecasting horizon.
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