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Abstract: Improving the operational efficiency of water distribution networks (WDNs) is a subject
that has been widely explored in the literature. Usually, a hydraulic model is used jointly with
optimization methods, which require considerable computational effort, hindering real-time inter-
ventions. Surrogate models based on machine learning are being studied to estimate the hydraulic
state of WDNs and reduce the processing time, and the results have been successful. In this paper,
different feedforward artificial neural networks (FFNNs) of the multilayer perceptron (MPL) type
were developed to estimate important hydraulic parameters that were applied to optimization al-
gorithms, namely, (i) energy consumption; (ii) tank levels; (iii) pressure in consumption nodes; and
(iv) minimum pressure. These parameters were chosen because they are frequently used in objective
functions, minimizing energy consumption and leakage volume, as well in operational restrictions.
The results showed that creating an individual MLP for each parameter can be a good strategy to
improve MLP accuracy.

Keywords: artificial neural networks; optimization; water supply; machine learning

1. Introduction

Water distribution networks (WDNs) have highly dynamic operations due to the
consumption pattern of the systems. Therefore, real-time interventions are necessary to
optimize their operations and guarantee service quality with minimal costs. This can be
achieved by adjusting the pumps and valves. These adjustments are traditionally carried
out using an optimization algorithm coupled with a hydraulic model to simulate the pro-
posed changes and verify the technical feasibility of this approach [1]. Different parameters
can be used to evaluate the proposed solution (leakage volume, energy consumption, water
quality, resilience index, and pressure uniformity), and, according to the topology of the
WDN, different operational restrictions can be set to verify the feasibility of the solution
(maximum and minimum pressures, water level and tanks, and maximum number of
switching pumps in the off position).

The literature shows that this approach of combining optimization algorithms with
hydraulic models is capable of generating good results. However, for large and complex
WDNs, the increase in computational effort hinders real-time interventions [2]. In many
cases, it is possible to simplify the WDN model using a skeletonization process to (i) remove
small pipes (in length or diameter); (ii) aggregate close nodes connected by short pipes; and
(iii) replace pipes in series or parallel using an equivalent single pipe [3]. Although skele-
tonization can significantly reduce the computational effort, the results have an intrinsic
error, especially when leakage is modelled as orifices.
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An alternative approach to reduce these errors is to use data-driven methods based
on machine learning. In this case, instead of using theoretical equations, the hydraulic
behavior is expressed using observations made through measurements (flow, pressure,
water level, and power). Indeed, the uncertainties of measurements are still a source of error.
However, this surrogate model is less susceptible to uncertainties in the model topology.
Artificial neural networks (ANNs) have been successfully used to solve different problems
with WDNs [4]. However, the architecture of these ANNs needs to be carefully studied to
apply them to real-time operations so that they can eventually replace hydraulic models.

Therefore, in this paper, the accuracy of an FFNN of the MLP type was evaluated for
its application in the optimization process. Individual MLPs were created to estimate the
most important parameters in an optimization procedure, namely, (i) energy consumption;
(ii) tank levels; (iii) pressure in consumption nodes; and (iv) minimum pressure. The
results showed that creating individual MLPs for each parameter can be a good strategy to
improve the accuracy of the FFNN.

2. Methodology
2.1. Creating the Database

The Anytown WDN was used as a case study for this research. The network consists
of 40 pipes, 19 nodes, two tanks, one reservoir, and one pump station. Using the MATLAB
programming environment in conjunction with EPANET, code was developed in which
four input parameters were set to the WDN operation: (i) consumption pattern; (ii) initial
level for the two tanks; and (iii) pump rotational speed. Hourly hydraulic simulations were
then carried out, and the following results were stored: (i) pump energy consumption;
(ii) pressures at each node; (iii) minimum pressure; and (iv) final level of the two tanks. For
each set of input parameters, the network produced a specific response. In this way, a loop
was created to iterate over the range considered for the input parameters. Subsequently, the
input parameters and their corresponding responses were stored in two separate matrices,
one for the input data and the other for the WDN responses. A total of 58,212 scenarios
were evaluated.

2.2. Development of the Artificial Neural Network

FFNNs of the MLP type were developed to solve the problems created by the com-
plexity of the equations governing the operation of WDNs. In order to predict the four
parameters of the WDNs (energy consumption, final pressures at the nodes, minimum
pressure, and final tank levels), a specific MLP was created for each of these parameters.
The architecture and training of each MLP was studied to provide the most accurate result.
Thus, the number of hidden layers and neuros, the activation functions, and the training
algorithm were set individually for each MLP. For all cases, the mean square error was
used as the performance function, which is an adequate criterion for convergence. The
data set was randomly divided into three different sets: 80% of the data were used to
train the metamodels, 10% were reserved for validation, and the remaining 10% were used
for testing.

After training the MLP, a hydraulic simulation was carried out over a 24 h period.
Subsequently, the MLP was provided with the same initial parameters as those used in the
hydraulic model, enabling a comparative assessment of the results.

3. Results
3.1. Energy Consumption Prediction

The MLP for the prediction of energy consumption was very accurate. Figure 1a shows
great similarity between the actual values from the hydraulic simulation and the values
predicted by the MLP every hour. Figure 1b shows the error between the real and predicted
values of the MLP, together with the average error. The average error during the 24 h
period was 1.6 W, and the largest error was 78 W (8.5%). The coefficient of determination,
R2, was calculated, and the result was 0.9712.
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ciently represent the variation in pressures, with some deviations from the observed val-
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Figure 1. Results for energy consumption: (a) comparison between actual value and ANN prediction;
(b) error and average error of the results.

3.2. Predicting Tank Levels

The MLP for the prediction of the tank levels showed very accurate results, especially
for tank 2. Figure 2a,c show the comparison between the actual value from the hydraulic
simulation and the neural network prediction for tanks 1 and 2, respectively. Figure 2b,d
show the error between the actual and predicted values, as well as the average error. The
average errors were 0.08 m for tank 1 and 0.005 m for tank 2, and the largest errors were
0.64 m (0.6%) for tank 1 and 0.47 m (0.4%) for tank 2. The coefficient of determination was
0.9976 for tank 1 and 0.9977 for tank 2.
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3.3. Prediction of Node Pressures and Minimum Pressure

The MLP’s predictions for node pressures were consistent. The MLP was able to
efficiently represent the variation in pressures, with some deviations from the observed
values. Figure 3 shows the results for nodes 14 and 1, which respectively represent the
nodes with the best and worst performance in terms of mean absolute error.
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Figure 3a,b show the comparative results of the hydraulic simulation and the MLP
prediction, and Figure 3c,d show the error between the actual and predicted values at each
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hour, as well as the average error. On average, the mean absolute error was 0.20 m for node
14 and 0.81 m for node 1, and the largest deviation observed was 13.5 m (12%) for node 14
and 10.7 m (11%) for node 1. Although some specific deviations with percentages above
10% were identified, the overall average of the errors remained low. Thus, the MLP is
considered reliable enough to be used as an operational tool. The lowest pressure recorded
in the WDN, as calculated by the hydraulic simulation, reached −8 m at node 19 at 8 pm.
The MLP predicted the minimum pressure in the same node at the same time, but with a
value of −2 m.

4. Conclusions

The application of FFNNs of the MLP type in this study aimed to create metamodels
capable of predicting the operational state of a WDN over a 24 h period. The results
were effective overall, with only minor variations at specific points. The average error
observed between the predicted and actual values for energy consumption and tank
levels was so low that it can be considered almost negligible. Although the prediction
of pressures at the nodes showed some specific deviations from the actual values, the
average error still indicates a satisfactory ability of the MLP to predict pressures. In
addition, the MLP was able to accurately determine both the time and the node where
the pressure would be at a minimum, with minimal deviation from the actual value, once
again demonstrating its good performance and its usefulness in practical applications for
monitoring and controlling WDNs.

Author Contributions: Conceptualization, L.E., B.B. and G.M.; methodology, L.E., B.B. and G.M.;
software, L.E. and G.M.; validation, L.E., B.B., G.M. and D.M.; formal analysis, L.E., B.B., G.M. and
D.M.; writing—original draft preparation, L.E. and G.M.; writing—review and editing, L.E., B.B.,
G.M. and D.M.; supervision, B.B. and G.M.; funding acquisition, B.B. and G.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Council for Scientific and Technological De-
velopment (CNPq) through the Productivity Scholarship PQ-2 (CNPQ no. 305256/2021-1) and the
Universal Demand Project (CNPQ no. 404605/2021-4), and the Minas Gerais State Research Support
Foundation (FAPEMIG) through project no. APQ 01320 21.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be requested from the corresponding author.

Conflicts of Interest: Author Débora Móller was employed by the company Tractebel Engineering
Ltda. The remaining authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

References
1. Balekelayi, N.; Tesfamariam, S. Optimization techniques used in design and operations of water distribution networks: A review

and comparative study. Sustain. Resilient Infrastruct. 2017, 2, 153–168. [CrossRef]
2. Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in optimisation of water distribution systems? A literature review of system

operation. Environ. Model. Softw. 2017, 93, 209–254. [CrossRef]
3. Martínez-Solano, F.J.; Iglesias-Rey, P.L.; Mora-Meliá, D.; Fuertes-Miquel, V.S. Exact skeletonization method in water distribution

systems for hydraulic and quality models. Procedia Eng. 2017, 186, 286–293. [CrossRef]
4. Garzón, A.; Kapelan, Z.; Langeveld, J.; Taormina, R. Machine learning-based surrogate modeling for urban water networks:

Review and future research directions. Water Resour. Res. 2022, 58, e2021WR031808. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/23789689.2017.1328921
https://doi.org/10.1016/j.envsoft.2017.02.009
https://doi.org/10.1016/j.proeng.2017.03.246
https://doi.org/10.1029/2021WR031808

	Introduction 
	Methodology 
	Creating the Database 
	Development of the Artificial Neural Network 

	Results 
	Energy Consumption Prediction 
	Predicting Tank Levels 
	Prediction of Node Pressures and Minimum Pressure 

	Conclusions 
	References

