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Abstract: Water demand forecasting is essential for ensuring a reliable water supply in any water
utility. It involves making accurate predictions for both short- and long-term water needs. Many
traditional time series forecasting methods are presently used; however, recent machine learning
techniques have grown in popularity for their robustness and accuracy. Random forest is an emerging
machine learning algorithm which was used to forecast short-term water demand for ten district
metered areas in Italy. Our predictions on test datasets using the trained model yielded correlations
as high as 0.98. Important explanatory variables affecting model performance included consumption
patterns represented by the seven-day water demand lag. In this paper, we present a reliable
application of the random forest algorithm for short-term water demand forecasting.
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1. Introduction

Water demand forecasting plays a vital role in the planning, operations, and manage-
ment of physical assets for water utilities. Optimization of near-future dispatch is one of
the most crucial practices of drinking water utilities, which are often resource-limited. We
need to make data-informed decisions that consider long-term operation. Traditional time
series forecasting methods, such as Auto-Regressive Integrated Moving Average (ARIMA)
and Seasonal Auto-Regressive Integrated Moving Average (SARIMA), have been used
for decades to forecast water demand using time series historical data [1]. In the past
decade, however, artificial intelligence (AI) has had a rapidly growing presence in the water
sector, especially machine learning (ML) techniques. ML techniques have the advantage of
being able to forecast nonlinear relationships between response variables in the presence of
noisy data. This is especially important in recent times with the increasing use of smart
water metering. Since not all data are applicable or valuable, ML models have offered a
great advantage over traditional forecasting methods in extracting valuable information for
powerful predictive analytics. In this vein, several ML techniques, such as artificial neural
networks (ANNs), support vector regression (SVR), and random forest (RF), have been
studied extensively to accurately forecast future trends [1].

2. Water Demand Forecasting Using Random Forest

RF emerges as a compelling machine learning algorithm for water demand forecasting
due to its ability to capture complex, non-linear relationships between independent and
dependent variables and to handle noisy data [1]. RF provides a valuable measure of feature
importance, shedding light on which variables exert the most influence on predicting water
demand [1]. This information aids in understanding the underlying factors driving water
demand and informs data-driven decision-making processes.
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Several studies have underscored the efficacy of RF in water demand forecasting.
Tyralis et al. (2019) showcased RF’s versatility across applications, including demand
forecasting [2]. Researchers have highlighted the comparative advantage of RF in high-
temporal-resolution and short-term water demand forecasting [3].

Comparative analyses have often shown RF to outperform alternative ML algorithms.
Villarin et al. (2019) demonstrated RF’s superior predictive capacity compared to other
ML models [4]. Xenochristou et al. (2018) illustrated RF’s potential in short-term demand
forecasting, considering a multitude of factors including consumption patterns, household
characteristics, socio-economic indicators, and climatic variables [5]. Smol A.K. et al. (2020)
reported RF’s superior accuracy in water use prediction compared to classical time series-
based methods and other ML algorithms [6]. IwA.K.in and Moazeni (2023) highlighted RF
as a reliable model for near-real-time forecasting, essential for water resource management
decisions [7]. However, De Souza Groppo et al. (2019) emphasized the necessity of
evaluating model performance case by case, recognizing that no single model universally
excels in all scenarios [8].

In alignment with the findings of these studies, RF emerges as a robust and effective
algorithm for water demand forecasting, often surpassing alternative ML approaches in
terms of accuracy and efficiency. The collective evidence underscores the potential of ML,
particularly RF, in addressing challenges in short-term water demand forecasting, affirming
the rationale for its utilization in this study.

3. Materials and Methods

This study sought to apply the RF ML model for short-term prediction of urban water
demand for ten (10) district metered areas (DMAs), part of a Water Distribution Network
(WDN) in the northeast of Italy. These DMAs varied considerably in size, average water
demand, and usage characteristics [9].

Various factors potentially influence demand data at each DMA, and employing hourly
net in-flow and weather data offered a detailed perspective. Data processing involved
the incorporation of additional explanatory variables, specifically the 7-, 14-, and 21-day
lag, along with the monthly average hourly demand, aimed at addressing hypothetically
recurring consumption patterns [1,5]. Lastly, a binary variable was added to indicate
whether the demand fell on a calendar holiday. Each DMA was broken into a separate
dataset with the above-mentioned explanatory variables.

The full inflow dataset utilized in this study comprised data from January 1st, 2021
to March 5th, 2023. With these original datasets, there were numerous missing values
present in the inflow data, which could have resulted from data collection malfunction
or other collection/transmission issues [9]. To enhance the reliability of predictions, RF
for nonparametric missing value imputations (missForest) was employed ahead of the
RF forecast model [10]. The algorithm utilizes RF, trained on the observed values within
the dataset, to predict and fill in the missing values. Employing this iterative algorithm
allowed the entire dataset to be used rather than the deletion of rows where demand data
were not present, preserving on average 8% of the data. Iterations were performed for each
DMA until the stopping criterion was met [10]. Following the successful application of
missForest, the completed dataset was used to train the RF model.

4. Results and Discussion

After the submission of the competition’s week 4 (W4) forecast for the week of 6 March–
12 March 2023, the previous week was used as the forecast period and a test dataset to
evaluate model performance. The training dataset was compiled until the final week.
Table 1 highlights metrics and statistics derived from the trial DMA forecasts.

Figure 1 was generated for each DMA to compare the predicted demand with the
recorded demand, facilitating the identification of scenarios where the training dataset led
to underpredictions or overpredictions in the test dataset. As shown for DMA I (with an
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R2 decrease from 0.96 to 0.74 between the training and test datasets), the model slightly
overpredicted then underpredicted for recorded demands below and above 30 L/s.

Table 1. RF training and testing dataset results for each DMA.

Metric DMA A 1 B C D E F G H I J

Var.
Explained

(%)
80.87 87.48 87.75 85.46 97.21 77 93.93 94.81 81.23 86.53

R2 0.96 (0.74) 0.98 (0.80) 0.97 (0.95) 0.97 (0.84) 0.99 (0.98) 0.95 (0.58) 0.99 (0.95) 0.99 (0.97) 0.96 (0.74) 0.97 (0.79)

RMSE 0.57 (1.11) 0.27 (0.44) 0.23 (0.2) 1.24 (3.15) 1.12 (1.72) 0.43 (1.07) 0.62 (0.96) 0.65 (1.2) 0.69 (1.48) 0.73 (1.56)

MAPE 0.05 (0.16) 0.02 (0.04) 0.03 (0.05) 0.03 (0.08) 0.01 (0.01) 0.04 (0.07) 0.02 (0.03) 0.02 (0.03) 0.02 (0.05) 0.02 (0.06)

1 First value applies to the training dataset; value in parenthesis is for testing dataset.

Eng. Proc. 2024, 69, x FOR PEER REVIEW 3 of 4 
 

 

Table 1. RF training and testing dataset results for each DMA. 

Metric DMA A 1 B C D E F G H I J 
Var. Explained (%) 80.87 87.48 87.75 85.46 97.21 77 93.93 94.81 81.23 86.53 

R2 0.96 (0.74) 0.98 (0.80) 0.97 (0.95) 0.97 (0.84) 0.99 (0.98) 0.95 (0.58) 0.99 (0.95) 0.99 (0.97) 0.96 (0.74) 0.97 (0.79) 
RMSE 0.57 (1.11) 0.27 (0.44) 0.23 (0.2) 1.24 (3.15) 1.12 (1.72) 0.43 (1.07) 0.62 (0.96) 0.65 (1.2) 0.69 (1.48) 0.73 (1.56) 
MAPE 0.05 (0.16) 0.02 (0.04) 0.03 (0.05) 0.03 (0.08) 0.01 (0.01) 0.04 (0.07) 0.02 (0.03) 0.02 (0.03) 0.02 (0.05) 0.02 (0.06) 

1 First value applies to the training dataset; value in parenthesis is for testing dataset. 

Figure 1 was generated for each DMA to compare the predicted demand with the 
recorded demand, facilitating the identification of scenarios where the training dataset led 
to underpredictions or overpredictions in the test dataset. As shown for DMA I (with an 
R2 decrease from 0.96 to 0.74 between the training and test datasets), the model slightly 
overpredicted then underpredicted for recorded demands below and above 30 L/s.  

 
(a) (b) 

Figure 1. Predicted vs. recorded demand for DMA I (in L/s). (a) Training results, (b) testing results. 

For all the DMAs forecasted, training dataset R2 values ranged from 0.95 to 0.99, with 
test datasets having R2 values from 0.58 to 0.98. Low R2 values may have been due to 
DMA-specific explanatory variables that were not adequately accounted for in the model 
input. Feature importance figures were created for each DMA to highlight explanatory 
variables that contributed to model prediction. An example figure for DMA J is presented 
in Figure 2. 

 
Figure 2. Feature importance for DMA J (commercial/industrial district close to the port). 

For all DMAs, the 7-day demand lag proved to be the most important explanatory 
variable in model training. Subsequent explanatory variables often included the 14- and 
21-day demand lag, and in some cases, the air temperature. 

Figure 1. Predicted vs. recorded demand for DMA I (in L/s). (a) Training results, (b) testing results.

For all the DMAs forecasted, training dataset R2 values ranged from 0.95 to 0.99, with
test datasets having R2 values from 0.58 to 0.98. Low R2 values may have been due to
DMA-specific explanatory variables that were not adequately accounted for in the model
input. Feature importance figures were created for each DMA to highlight explanatory
variables that contributed to model prediction. An example figure for DMA J is presented
in Figure 2.
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Figure 2. Feature importance for DMA J (commercial/industrial district close to the port).

For all DMAs, the 7-day demand lag proved to be the most important explanatory
variable in model training. Subsequent explanatory variables often included the 14- and
21-day demand lag, and in some cases, the air temperature.
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5. Conclusions

The application of a robust tool for short- and long-term water forecasting has con-
tinued to grow in importance for water utility planning, operations, and management of
precious water resources. RF has been cited as a very versatile and accurate ML algorithm
for water demand prediction, with capabilities of iterative improvement to offer powerful
predictive analytic capabilities. In its application for water demand forecasting across ten
DMAs, our model provided consistently reliable predictions and insight into the signifi-
cance of each explanatory variable. This information can enhance the model’s forecasting
performance and guide utilities on which variables are crucial to monitor. As an established
algorithm with relatively simple implementation, RF offers comprehensive capabilities in
addressing challenges for short-term water demand forecasting.
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