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Abstract: Climate change is leading to a general shortage of raw water availability combined with
more pronounced seasonality and dry phases. The goal of the collaborative research project TwinOpt-
PRO is to contribute to EU-wide climate neutrality in 2050 by the minimization of energy supply
for water treatment and pumps in drinking water distribution systems. For that purpose, a digital
platform that combines different forecasting models with simulation and optimization modules
was developed. The aim is to ensure secure and compliant supply to customers in the future while
maximizing the use of renewable energy and minimizing costs.
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1. Introduction

Climate change poses enormous challenges for drinking water utilities in Germany
and around the world. For example, there is generally less raw water available, and
seasonal fluctuations and dry periods are more pronounced. In addition, the goal of climate
neutrality defined in the Paris Agreement [1] requires drastic energy savings in all sectors.
To prepare the water supply for these challenges, the participants in the TwinOptPRO joint
collaborative research project, which is funded by the German Ministry for Education and
Research BMBF, are developing a digital platform that companies can use to optimize their
drinking water treatment and storage tank management. The platform combines various
forecasting models with simulation and optimization modules.

The basic idea, to decouple the water production and transport from the consumption
over time by utilizing the storage volume of the reservoirs, is not new. However, besides
the uncertainties of the demand, the availability of spring water is also considered by
hydrological modeling. Another challenge for efficient pump scheduling is the commonly
highly fluctuating spot market prices for electricity that are mostly driven by the availability
of renewable energy. For an unknown water demand, data-driven forecasting models are
trained using historical data from the control system. One of the most important challenges
is the development of a state machine that integrates the different models and data from
numerous sources into one central platform and allows the automatized communication
between the components.
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The objective of the optimization module is to determine a timetable for the next 24 h
for which the energy costs are minimized. The decision variables are the individual pump
speeds and control valve settings. The optimization is restricted by numerous constraints.
As a top priority, the reliability of supply at any time and any place with qualitatively
perfect drinking water must be secured. Therefore, the minimum (min.) and maximum
(max.) water levels in the tanks must be complied with. In the case of the pilot system of
the project, hard groundwater is mixed with soft spring water. The resulting hardness of
the water must comply with a given target hardness.

For a solution, the problem is formulated as a mathematical bi-level optimization
problem. The decision variables of the upper level are the lumped pump flows delivered
by the different pumping stations. The objective function contains the electricity cost, and
the constraints include the min. and max. tank water levels and the continuity equation
expressed by the tank differential equations. The lower levels of the optimization refer
to the pumping stations and deliver the combinations of pumps or, respectively, pump
speeds for which the pumps can deliver the desired flow of the upper level with minimum
electrical energy consumption.

In the first part of this paper, the main idea and theoretical background are pre-
sented. In the second part, the application to a real-world urban water distribution system
is demonstrated.

2. Materials and Methods
2.1. System Description

In the project, two use cases are considered: a medium sized urban water supply
system and the parts of a regional water supply system. This paper refers only to the
former. The drinking water network supplies roughly 30,000 inhabitants and an exten-
sive commercial area. The water supplied to the customers consists of mixed water from
two groundwater wells as well as spring water from an adjacent mountain range. The
groundwater is pumped into two storage tanks in which it is mixed with the spring wa-
ter. One important constraint is to maintain a constant water hardness of 8.5 ◦dH (about
1.52 mmol/L CaCO3). Therefore, the groundwater must be softened using membrane
technology before it is mixed with spring water. The mixing ratio is determined by the
availability of spring water and the target water hardness. In recent years, the volatility
of the spring water discharge has increased while the total amount of available spring
water has been constantly decreasing. For the optimization, the availability is estimated by
prognosis models for the short term (24 h) as well as long term (years); the mixing condi-
tions must be considered as additional constraints, which presents a particular challenge
compared to conventional procedures.

2.2. Digital Platform and Dashboards

The data platform is employed for both demand forecasting and operational opti-
mization. In both cases, multiple process steps (e.g., data preprocessing, calculation, and
storage) are necessary, resulting in the creation of data processing pipelines. Since various
services communicate with each other and low latency is required, the center of the data
platform consists of the streaming database Kafka. Within the streaming platform, data are
exchanged asynchronously through a publisher–subscriber model, making it considerably
faster compared to a traditional database. To present results to operators, user centric
dashboards were developed. For example, demand forecasts for specific zones for the next
24 h, including the uncertainty, are visualized for operators and updated every hour.

2.3. Hydrological Model for Forecasting Short-Term and Long-Term Spring Water Availability

The springs utilized for water supply are sourced from a catchment area of 2.5 km2,
resulting in rapid responses to rainfall. To achieve forecast lead times exceeding 24 h, a
combination of the ICON-EU weather forecast model and a hydrological model is employed.
The hydrological transfer function is modeled using two competing approaches: the
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SuperflexPY framework [2] and an artificial intelligence strategy. A major constraint is
the effect of the conveyance infrastructure, which limits flow to 60 m3/h, consequently
restricting analysis to only the lower segments of the hydrograph for accurate fitting.

2.4. Water Demand Forecasting Models

The water demand is forecasted with state-of-the-art DeepAR models [3], a specific ar-
tificial neural network architecture based on the popular long short-term memory network
(LSTM) [4]. DeepAR provides probabilistic results and can incorporate both numerical
and categorical data. In this project, we calculate 24h demand forecasts in a sequence-to-
sequence mode, based on hourly data and with an optimized number of input time steps
for each local model. The input data are past demand data, weather data, derived weather
features, and datetime/calendar features (weekday, day of year, etc.). For more details,
please refer to our submission to this year’s Battle of Water Demand Forecasting (BWDF)
at the WDSA/CCWI Joint Conference 2024, in which we demonstrate and explain the
approach in more detail and provide code in an associated repository.

2.5. Pump Scheduling Optimization and Digital Twin

The mathematical model of the pump scheduling problem is formulated as a bi-level
optimization problem. The objective function of the upper level is the pumping cost; the
decision variables are the pumping flows. As constraints, the water level in the storage
tanks and the mixing ratio between groundwater and spring water must be considered.
The lower level includes the minimization of the required electrical power for the transport
of the given flow defined by the upper level. The decision variables of the pumping
station optimization depend on the type of pumps. For variable speed pumps, the optimal
combination of pump speeds is calculated; for simple pumps, the combination of pump
states, on/off, is utilized. Further, combinations are possible in which only one pump has a
frequency controller and the other pumps run on a fixed pump curve. The dependence
of the frictional head loss along the transport pipes is taken into account by hydraulic
models. In terms of computational costs, it has been shown to be advantageous not to
use the hydraulic model directly but to use it to train a neural network offline and use
it as a surrogate model in the online case. For an online application, the optimization
model is connected to the central platform and its Kafka database. From there, the demand
prognosis of the different supply zones, the current state of the system, and the cost of
electricity for the next 24 h are available.

A simplified view of the optimization model consisting of the two boundary nodes,
i.e., groundwater works (left) and spring water input node (right); two main storage tanks
where the water is mixed; three pumping stations; and the two main demand zones is
shown in Figure 1. The cloud symbols indicate the parts of the hydraulic model that were
replaced by neural networks.
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Figure 1. Simplified schematic view of the optimization model. 
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Figure 1. Simplified schematic view of the optimization model.
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In the online application, the results of the optimizer are transferred via the platform to
a digital twin of the complete water distribution system for validation of the optimization
results by means of a 24 h look-ahead extended period simulation.

3. Results

The project is not yet finished. However, the first test calculations show possible cost
savings of around 20% (30%, if no mixing constraints are considered).

4. Discussion and Conclusions

Digitalization offers a wide range of improvements in the management of drinking
water networks. In this research project, it was specifically shown that digital data in
combination with mathematical models and algorithms enable cost savings, greenhouse
gas reductions, and the stabilization of the electrical grid. The project has also shown that
the integration of multiple software components and stakeholders is still a challenge.
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