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Abstract: A deep learning strategy was exploited to learn and predict the deformation of stiffeners,
3D printed onto a pre-stretched soft membrane. The working process reads as follows: the membrane
is stretched until a pre-defined level; a specific geometry of stiffeners is printed onto it; the membrane
is finally released, and due to the presence of the printed stiffeners, the system undergoes an out-
of-plane deformation due to buckling. Fused deposition modeling was specifically calibrated to
print PLA (Polylactic acid or polylactide) on a Lycra fabric. To assess how the printed pattern affects
the buckled configuration, samples featuring different dimensions and in-plane geometries of the
stiffeners were printed and numerically modeled via finite elements (FEs). The calibrated model was
next exploited to construct a larger training dataset of stiffener geometries. A pre-trained You Only
Look Once (YOLO)-based digital model was finally trained to foresee the link between the in-plane
dimensions of the stiffeners before the release and the out-of-plane displacements in the buckled
configuration. By handling around 100 different patterns, a precision of 93% in terms of recognition
of the in-plane dimensions of the stiffeners and a mean absolute percentage error of 5% at most in
terms of an estimate of the features of the buckled configuration were attained. The reported results
testify the capability of the proposed approach and its potential efficiency to optimize the shape of
the 3D printed geometries.

Keywords: 3D printing; smart textiles; deep learning; neural networks; YOLO

1. Introduction

The interplay between different materials under mechanical loading presents a unique
set of challenges and opportunities. Several new possible applications can be unlocked
by exploiting the time-varying interaction between stiffeners and a soft substrate, e.g.,
if the substrate itself is stretched before the stiffeners are introduced into the system [1–3].
Depending on the intended application, a variety of substrate and stiffener materials can
be adopted [4], and different fabrication methods can be employed [5].

This research was specifically focused on the assessment of the deformation pattern
of PLA stiffeners, 3D printed onto a pre-stretched Lycra membrane with a Voron 2.4 3D
printer. Upon the release of the Lycra membrane, the printed geometries are shown to
undergo different buckling-governed deformations; see, e.g., [6] for a thorough discussion
on the theoretical bases of the current results. Such configurations are not only of theoretical
interest but also have practical implications in the design and application of manufactured
materials [7–9]. The printed geometry thus emerges as a key factor in the determination of
the final shape, which plays on its own a critical role in meeting the requirements for the
desired application.

To provide a comprehensive study on these effects, to understand the interaction
between the pattern of the stiffeners and the buckled shape, and to then optimize the said
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shape in order to attain (hopefully unprecedented) results, experimental tests carried out in
the laboratory and the outcomes of FE analyses within an advanced computational frame
are presented in this work. Numerical results were supplemented to the experimental ones,
within a so-called multi-fidelity scheme [10], to enrich the dataset of solutions and drive
the learning stage by way of a neural network (NN)-based scheme.

The deep learning (DL) approach harnessed the power of a pre-trained YOLO model
to identify and quantify the in-plane dimensions of each printed geometry from pictures
taken before the release of the pre-stretch. Subsequently, a regression network was exploited
to predict the out-of-plane displacement of the stiffeners, effectively linking the observed
geometric features with the resulting mechanical responses. Machine learning tools have
already been adopted within the realm of 3D printing, to correlate the printing parameters
to the characteristics of the final product, such as the mechanical properties and the surface
roughness [11,12]. In this work, the focus was not on the 3D printed part but rather on the
assessment of the interaction between the elastic properties of the substrate and stiffeners,
aiming to create a digital twin able to predict the behavior of the entire system under a
varying geometry of the 3D printed parts.

This multifaceted approach not only allows for enhancing the predictive capabili-
ties of NNs in handling complex physical phenomena but also sets the stage for future
developments in the optimization of 3D printed structures to attain targeted mechanical
properties. The integration of machine learning strategies with traditional simulation,
or physics-based techniques, see [13], can further pave the way for novel methodologies in
the field of additive manufacturing, aiming to optimize material and structural responses
for real-world applications.

The main novelty of the procedure proposed in this work stems from the integrated
experimental and numerical approach to building a kind of cross-domain learning strategy
(see e.g., [14]), aiming to encode the role of pre-stretch and the pattern/geometry of the
3D printed stiffeners in the buckled configuration. The remainder of this paper is thus
arranged as follows: Section 2 reports the adopted solutions for 3D printing, numerical
modeling of the joint response of soft substrate and stiffeners, and the learning of the
resulting buckled configuration; Section 3 is devoted to the presentation and discussion of
some results; finally, some concluding remarks and suggestions for future developments
are gathered in Section 4.

2. Methods

Three-dimensional printing on textiles can be employed for the production of smart
systems, even endowed with shape memory effects. When a material exhibits such effects,
any stimulus inducing a specific trigger can lead to shape and function metamorphoses;
if the trigger is removed, the material can return to its original shape. This feature is here
obtained by extruding a thermoplastic polymer filament onto a flexible substrate, which is
kept in tension during the printing process and then released.

When the textile is stretched, it also stores an internal (elastic) energy. If no parts are
additionally printed on it, as soon as the tensile stress is released, the fabric returns to its
original configuration. The interaction with the printed part acts instead as a constraint,
resulting in the formation of a 3D buckled configuration that is induced by the balance
of forces and moments. The so-formed structures usually show two or more metastable
equilibrium states (multi-stable configurations) and are free to switch between them with
the application of a small triggering stimulus. For these reasons, these textile systems can
be labeled as smart textiles, meaning that they can purposely change their shape or function
in response to the external actions, within a time-varying frame [7,15].

In the following, a discussion is reported on the methodology adopted in the laboratory
to induce the sought buckled configuration of the smart textile, and the parameters mainly
affecting the 3D printing process are discussed. Next, numerical simulations, carried out
using the commercial finite element code Abaqus, are discussed to pinpoint the critical
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issues in the analysis of such slender systems. Finally, the NN-based approach used to
learn and predict the buckling behavior of the stiffened textile is described.

2.1. Additive Manufacturing

A VORON 2.4 3D printer was used to take advantage of its printable surface of
dimensions 350 mm × 350 mm, using a printing bed made of aluminum. Results were
obtained by extruding PLA on a pre-deformed sheet of Lycra. Figure 1 shows a picture
of the 3D printer and a test setup adopted to uniaxially stretch the Lycra substrate before
printing the stiffeners.

Figure 1. The VORON 2.4 3D printer used in this study, and a preliminary setup to stretch the Lycra
sheet exploiting the printer frame.

PLA is derived from the fermentation of carbohydrates found in corn performed by
bacteria. The production process can allow for the control of the mechanical properties of
the final product through nanotechnology, for example, by incorporating different fibers
or nanofillers. PLA is biodegradable, with the degradation mediated by microorganisms
under certain environmental conditions. Its main downside is, however, represented by
its brittleness, though this issue did not provide any constraints to the outcome of the
current activity.

Lycra, also known as Spandex and Dorlastan, is the commercial name of elastane
fibers. These fibers contain a polyurethane bond, and they are used when elasticity and
deformation recovery are highly required. Yarns made of Lycra are often spun together
with yarns of natural fibers, to obtain elastic knitted fabrics with elongation at failure
increasing with the percentage of the elastane.

This study was based on former tests performed to optimize the whole manufacturing
process, in terms of the following parameters:

• Layer height, to set the vertical thickness of each deposited layer of PLA. It affects the
quality of the product and the printing time.

• Wall thickness, to set the in-plane width of the printed parts. It affects the strength of
the product, the printing time, and the amount of material used.

• Printing speed, to define the speed at which the extruder moves while printing.
A higher printing speed increases the vibrations and makes the printed parts suscepti-
ble to under- and over-extrusion.

• Traveling speed, to define how fast the nozzle moves over the substrate to reach the
next printing coordinates. It can be set much higher than the print speed, as it does
not affect the print quality much, while it helps prevent oozing.

• Z-Hop, enabled to allow the nozzle to be lifted during traveling and avoid con-
tact between the nozzle and the printed part. It makes printing more reliable, al-
though slightly more time-consuming.

• Printing temperature, to define the temperature reached by the nozzle. It has to be
high enough to melt the PLA filament, but it can also affect the viscosity of the Lycra
substrate causing permanent unwanted deformations.
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• Retraction: when the 3D printer stops pushing the material, the flow does not immedi-
ately stop, causing unwanted oozing and stringing. To define the retraction parameters,
such as distance and speed, it has to be considered that retraction completely stops
material flow, thus effectively preventing oozing, but it may also negatively affect
dimensional accuracy and gripping.

• Cooling, which plays a significant role in setting the print quality, especially for
materials with low glass transition temperature ranges such as PLA. Turning on the
cooling option activates the fans, whose rotations remove heat from the deposited
layer, allowing it to solidify before the next layer is deposited.

2.2. Finite Element Analysis

To validate the 3D printing process and optimize the performance of the stiffeners,
FE analyses were run with the state-of-the-art FE software Abaqus [16], which stands as a
powerful tool for performing parametric studies.

To match the real behavior of the printed structures, the same steps of the laboratory
tests were considered: pre-stretching of the Lycra sheets; 3D printing of PLA stiffeners on
the pre-stretched substrate; release of the pre-stretch to obtain the buckled configuration.
Out of these three steps that characterize the 3D printing scheme, it turned out that the
most challenging one to model was indeed the release of the pre-stretch of the Lycra sheet.
In fact, by releasing the boundary conditions on its sides, the sheet turned out to be weakly
constrained; further than that, the interface between the soft substrate and the hard printed
part could lead to some wrinkles in the sheet. Hence, to fully model the release of the
said boundary conditions, some energy stabilization had to be added to the analyses to
obtain the results shown in the following and many more for data augmentation purposes,
independently of the printed pattern.

Dynamic or inertial effects were disregarded in the present investigation, having
assumed the pre-stretch to be applied and removed smoothly and slowly. Independently
of the thicknesses, both the substrate and the printed stiffeners were discretized using
hexahedral, 3D solid elements; a preliminary mesh refinement investigation was also
carried out to make sure that the proper response of the system in bending could be
attained for all the considered geometries.

2.3. Deep Learning

The NN-based DL strategy adopted here was split into two distinct parts, as already
outlined. Here, we delve deeper into the functionality of each part, to understand the
relevant role in predicting the buckled configurations. A kind of multi-fidelity approach
was assumed, to exploit both laboratory data and the results of the FE analyses, each with
the proper level of fidelity, see e.g., [10].

The first component of the proposed DL strategy exploited a pre-trained YOLO
architecture [17], adapted to recognize the three geometries characterizing the printed
patterns: lines, rectangles, and crosses. This adaptation was obtained through an extensive
re-training process on a custom-built dataset generated via matplotlib, allowing for diverse
configurations of the target geometries. The YOLO model turned out to be able to identify
each geometry within bounding boxes, which were then converted into the actual in-
plane dimensions of the 3D printed part by way of a proper scaling factor. This scaling
was imperative to maintain dimensional consistency across all the processed images and
ensure the integrity of data input for the subsequent predictive modeling phase, as the
said dimensions represent the crucial input parameters for the subsequent deformation-
predictive NN.

For computational efficiency, the second part of the proposed DL strategy was divided
into three sub-networks, each dedicated to one of the recognized geometries. This splitting
of the information and, therefore, of the implementation was based on the premise that each
printed geometry leads to a peculiar deformation response under similar boundary/loading
conditions. Despite the aforementioned splitting, the structure of the sub-networks re-



Eng. Proc. 2024, 72, 3 5 of 8

mained consistent across the three geometries. Each network was designed to receive as
input specific dimensional data: two parameters (width and thickness) for lines and three
parameters (height, width and thickness) for rectangles and crosses.

The NNs were fully connected ones, with a single hidden layer featuring 32 neurons
and with a single output that predicts the out-of-plane deflection in a specific point selected
to characterize the printed pattern. The parameters of these NNs were initialized using the
Glorot uniform initializer, which is particularly effective in maintaining a uniform scale of
gradients across layers in DL models. A linear activation function was employed to account
for the linear relationship observed between the input dimensions and the deformation in
the FE simulations. As a loss function, for all the geometries, the mean squared error was
employed to quantify the deviation of the digital predictions from the ground truth values.

3. Results and Discussion

The 3D printing setup was customized with a configuration of screws to link the
Lycra sheet with the left and right sides of the bed, see Figure 1. An additional frame
was also designed to allow changing the pre-stretch during the printing, so that multiple
buckled configurations can be obtained at the same time. The fabric was locked into place
and stretched in one single direction, although a biaxial stretching is possible and will be
investigated in future activities, to understand the interplay between the fabric of the textile
and the printed geometry of the stiffeners. A precise tuning of the value of the pre-stretch
was allowed by an ad hoc designed system of movable (rotating) parts attached to the frame
and constraining the membrane. As far as the printing parameters listed in Section 2.1 are
concerned, their values as set in the experimental campaign are listed in Table 1. Some
exemplary geometries of the printed parts and of the relevant buckled configurations can
be seen in Figure 2.

In the FE analyses, PLA was assumed to behave elastically, featuring a Young’s
modulus E = 3 GPa and a Poisson’s ratio ν = 0.25. Due to its hyperelastic properties, see,
e.g., [18], Lycra was instead assumed to behave according to the Arruda–Boyce model with
the following values for the parameters, see [19]: µ = 9 MPa, λm = 87 MPa, and D = 0.
Results related to the exemplary geometries considered in Figure 2 are reported in Figure 3,
as obtained by allowing for the symmetries in the geometry and boundary conditions so
that only one quarter of the entire system was modeled.

Table 1. Values of printing parameters adopted in the present study.

Parameter Value

Layer height (mm) 0.2
Layer width (mm) 0.4

Wall thickness (mm) 0.8
Top/Bottom pattern (-) Concentric

First layer speed (mm/s) 20
Printing speed (mm/s) 30

Printing temperature (°C) 205
Bed temperature (°C) 30

Cooling fan (%) 100
Travel speed (mm/s) 150

Retraction (mm/s) 0.5
Z-Hop (mm) 0.3
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Figure 2. Exemplary geometries of the 3D printed stiffeners.

Figure 3. Comparison between the experimentally observed and the numerically obtained buckled
configurations, related to the exemplary geometries of stiffeners shown in Figure 2.

The YOLO model correctly identified each geometry within the bounding boxes, see
Figure 4. The subsequent regression NNs were trained using a curated dataset collecting
the results of the FE simulations, encompassing approximately 100 samples with different
dimensions. The YOLO-based geometric recognition phase achieved a precision of 93%
and a recall of 99% at a 0.2 level of confidence, a threshold at which the identification of
geometries can be considered reliable, see Figure 5. This high level of accuracy ensured
that the dimensions fed into the deformation prediction NNs were based on dependable
preliminary recognition, laying a solid foundation for subsequent predictive accuracy. For
all the geometries, the error assessment was conducted on randomly selected samples
representing 20% of the training dataset, to perform a validation test. The mean absolute
percentage error (MAPE) evaluated on these samples yielded an outcome that testifies the
procedure’s performance under the proposed training conditions: in particular, a MAPE
of 2.67%, 3.80%, and 5.13% was attained for the datasets composed of lines, crosses, and
rectangles, respectively.
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(a) (b) (c)

Figure 4. Exemplary YOLO outputs for the three different geometries. In the figures, different
colors of the bounding boxes correspond to the different geometries identified, in the case of (a) line,
(b) rectangle, and (c) cross geometries.

Figure 5. Confusion matrix evaluated at 0.2 confidence threshold on validation and test datasets,
leading to a precision of 93% and a recall of 99%.

4. Conclusions

Despite the challenges envisioned for printing hard stiffeners on pre-stretched com-
pliant membranes and for learning how the system buckles as soon as the mentioned
pre-stretch is released, the results gathered here can be considered promising to provide
proof of the capability of the proposed NN-based approach. This would become especially
important when moving to more complex 3D printed patterns, as numerical simulations
can become unfeasible and too expensive to be used as the only basis for the optimization
strategy of the geometry.

Future efforts will focus on enhancing the dataset with a more balanced range of
geometric dimensions. The learning scheme, which has been slightly discussed in the
paper, will be further investigated to understand whether weights can be shared among
the NNs used for the different geometries. To extend the proposed methodology to other
geometric types, a reduction in the MAPE is foreseen to improve the robustness and
reliability of model predictions.



Eng. Proc. 2024, 72, 3 8 of 8

Author Contributions: Conceptualization, S.M.; methodology, S.B., D.C., P.M. and S.M.; software,
S.B., P.M. and A.T.; validation, S.B., P.M., A.T. and S.M.; formal analysis, S.B., P.M. and A.T.; inves-
tigation, S.B., P.M. and A.T.; resources, S.M.; writing—original draft preparation, P.M. and S.M.;
writing—review and editing, A.T. and S.M.; visualization, P.M.; supervision, D.C. and S.M.; project
administration, S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Markus Henke, E.-F.; Wilson, K.E.; Anderson, I.A. Entirely soft dielectric elastomer robots. In Electroactive Polymer Actuators and

Devices (EAPAD); SPIE: Portland, OR, USA, 2017; Volume 101631.
2. Agkathidis, A.; Berdos, Y.; Brown, A. Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles. Int. J.

Archit. Comput. 2019, 17, 74–87. [CrossRef]
3. Kycia, A.; Guiducci, L.; Werner, L.; Koering, D. Self-shaping Textiles—A material platform for digitally designed, material-

informed surface elements. In Proceedings of the Anthropologic: Architecture and Fabrication in the Cognitive Age—Proceedings
of the 38th eCAADe Conference, Berlin, Germany, 16–18 September 2020; Volume 2, pp. 21–30.

4. Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M. Possible Applications of 3D Printing Technology on
Textile Substrates. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Volume 141, 48th Conference
of the International Federation of Knitting Technologists (IFKT), Moenchengladbach, Germany, 8–11 June 2016; p. 012011

5. Oxman, N.; Rosenberg, J.L. Material-based Design Computation An Inquiry into Digital Simulation of Physical Material Properties
as Design Generators. Int. J. Archit. Computing. 2007, 5, 25–44. [CrossRef]

6. Bazant, Z.P.; Cedolin, L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories; World Scientific Publishing:
Singapore, 2010.

7. Koch, H.C.; Schmelzeisen, D.; Gries, T. 4D Textiles Made by Additive Manufacturing on Pre-Stressed Textiles—An Overview.
Actuators 2021, 10, 31. [CrossRef]

8. Rastogi, P.; Kandasubramanian, B. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem. Eng. J.
2019, 366, 264–304. [CrossRef]

9. Arshad, V.; Jamil, B.; Rodrigue, H. FlexiStiff: A Variable Tensile Stiffness Element for Modulating the Behavior of Tensegrity
Structures. Adv. Eng. Mater. 2024, 26, 2400497. [CrossRef]

10. Torzoni, M.; Manzoni, A.; Mariani, S. A multi-fidelity surrogate model for structural health monitoring exploiting model order
reduction and artificial neural networks. J. Mech. Syst. Signal Process. 2023, 197, 110376. [CrossRef]

11. Uludag, M.; Ulkir, O. Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: Experimental investigation
using Taguchi method. Multidiscip. Model. Mater. Struct. 2024, 20, 211–225. [CrossRef]

12. Ulkir, O.; Bayraklılar, M.S.; Kuncan, M. Raster Angle Prediction of Additive Manufacturing Process Using Machine Learning
Algorithm. Appl. Sci. 2024, 14, 2046. [CrossRef]

13. Quesada Molina, J.P.; Mariani, S. ybrid model-based and data-driven solution for uncertainty quantification at the microscale.
Micro Nanosyst. 2022, 14, 281–286. [CrossRef]

14. Yuan, Z.; Zhu, S.; Mariani, S.; Zhang, Q.; Wu, J.; Zhai, W. Unsupervised cross-domain damage detection and localization for
vibration isolators in metro floating-slab track. Mech. Syst. Signal Process. 2023, 200, 110647. [CrossRef]

15. Jourdan, D.; Skouras, M.; Vouga, E.; Bousseau, A. Printing-on-fabric meta-material for self-shaping architectural models. In
Proceedings of the Advances in Architectural Geometry 2020, Paris, France, 28–29 April 2021.

16. ABAQUS/Standard User’s Manual; Dassault Systèmes Simulia Corp: Providence, RI, USA, 2024.
17. Redmon, J. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
18. Belytschko, T.; Liu, W.K.; Moran, B.; Elkhodary, K. Nonlinear Finite Elements for Continua and Structures, 2nd ed.; Wiley-Blackwell:

Oxford, UK, 2014.
19. Arruda, E.M.; Boyce, M.C. A three-dimensional model for the large stretch behavior of rubber elastic materials. J. Mech. Phys.

Solids 1993, 41, 389–412. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1177/1478077118800890
http://dx.doi.org/10.1260/147807707780912985
http://dx.doi.org/10.3390/act10020031
http://dx.doi.org/10.1016/j.cej.2019.02.085
http://dx.doi.org/10.1002/adem.202400497
http://dx.doi.org/10.1016/j.ymssp.2023.110376
http://dx.doi.org/10.1108/MMMS-09-2023-0313
http://dx.doi.org/10.3390/app14052046
http://dx.doi.org/10.2174/1876402914666220328123601
http://dx.doi.org/10.1016/j.ymssp.2023.110647
http://dx.doi.org/10.1016/0022-5096(93)90013-6

	Introduction
	Methods
	Additive Manufacturing
	Finite Element Analysis
	Deep Learning

	Results and Discussion
	Conclusions
	References

