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Abstract: In early 2020, the outbreak of COVID-19 brought a global pandemic, challenging healthcare
systems worldwide and prompting countries to implement various measures to contain the spread.
These measures, while necessary, led to significant socioeconomic disruptions. One of the most
pressing concerns was the strain on healthcare systems, which caused shortages of medical supplies,
hospital beds, and healthcare personnel. This raised the prospect of a healthcare system collapse.
Using data analysis, we studied how to understand the dynamics of COVID-19 transmission in the
context of urban structures, focusing on preventing healthcare system collapse.
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1. Introduction

In early 2020, the outbreak of COVID-19 rapidly became a global pandemic, putting
immense pressure on healthcare systems worldwide and leading to various containment
measures being implemented by nations. While these measures were necessary to control
the spread of the virus, they also caused significant disruptions to society. One of the most
pressing issues was the strain on healthcare systems, which led to shortages of medical
supplies, hospital beds, and healthcare personnel and increased the risk of system collapse.
Two research studies have been conducted in this area. The first study, conducted by Sato
et al., focused on the impact analysis of COVID-19 on hospital bed availability in Shiga
Prefecture, Japan, using a mathematical infectious disease model. The second study was
conducted by Hirata et al. to predict the spread and convergence of COVID-19 using deep
learning techniques. Both studies analyzed related data and predicted COVID-19 effects
without considering urban structures.

Urban areas in Japan are classified into diffuse and intensive urban areas. Diffuse
urban areas refer to areas where the development of urban structures disperses from the
central region to the surrounding areas. On the other hand, intensive urban areas refer to
areas where urban structures develop intensively from the central region. In this study, we
focused on Kumamoto Prefecture, Japan, which falls into the intensive urban category [1].
There is a risk of inadequate medical services due to a critical shortage in the medical
field and the collapse of the healthcare system. The Japanese healthcare system will likely
collapse when the hospital bed occupancy rate exceeds 50%. This rate is chosen based on
the welfare index of infection status proposed by the Ministry of Health, Labor, and Welfare
of Japan in 2020 [2]. The standard changes annually starting in 2020, and starting in 2022, a
bed occupancy rate of 50% or less is considered appropriate.

In this research, we explored how COVID-19 spread within various urban structures
and focused on maintaining the resilience of the healthcare system by keeping the bed oc-
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cupancy rate below 50%. This paper details the data collection from Kumamoto Prefecture,
the data analysis, and the evaluation of two models.

2. Data Collections

In this research, we focused on intensive urban structure and collected all related
data on Kumamoto Prefecture. Eight types of data were collected, including the number
of infected individuals, hospitalized individuals, hospital beds, severely ill individuals,
deaths, number of vaccinations, average temperatures, and changes in the mobility trends
of visitors to specific locations (grocery stores, parks, etc.) over time. We collected two
significant policies implemented in Japan.

The first was the declaration of a state of emergency [3]. This policy is based on the
Law on Special Measures against the New Coronavirus, enacted on 13 March 2020. The
prime minister declared the period and area where emergency measures could be used in
the event of a nationwide and rapid spread of the virus, which could profoundly impact
the lives of the people and the economy. The prefectural governor of the study area may
request residents to refrain from leaving their homes and cooperate in other ways necessary
to prevent the spread of the disease, except when necessary to maintain their livelihood. In
addition, the governor may request or give instructions to close schools and restrict the
use of facilities that attract large numbers of people, such as department stores and movie
theaters, and may use land or buildings for the construction of temporary medical facilities
when particularly necessary without the consent of the owners. The second policy is the
Law on Priority Measures for the Prevention of the Spread of Disease [4]. Priority measures
for the prevention of the spread of new coronavirus infection are region-specific efforts
to prevent the spread of new coronavirus infection. The government publicly announces
these measures for specific areas where the spread of infection is likely to have a significant
impact on people’s lives and the economy, and where there is a risk of disruption to the
medical system and public health. Specific measures include restrictions on eating and
drinking establishments, use of facilities, events, etc., as well as requests to go out, travel,
and go to work.

2.1. Infected Individuals, Hospitalizations, and Bed Capacities

The number of infected individuals, hospitalized individuals, hospital beds, severely
ill individuals, and fatalities were collected for this study. The data were compiled based
on the data from the Health Information and Response System for Individuals Infected
with New-type Coronavirus (HER-SYS) provided by the Ministry of Health, Labor, and
Welfare [5–7]. The period of data collection was from 16 January 2020 to 8 May 2023.

2.2. Vaccination Rate

The vaccination rate for seven doses was collected. The data was compiled based on
the Vaccination Record System (VRS) provided by Digital Agency [8] for 12 April 2021 to
16 November 2023.

2.3. Average Temperature

The average temperatures in Kumamoto Prefecture were collected from 9 May 2020 to
9 May 2023, and they were provided by the Japan Meteorological Agency [9].

2.4. Mobility Changes

The rate of change in mobility trends of visitors to specific locations (grocery stores,
parks, etc.) from 1 January 2022 to 1 October 2022 was collected. Google’s Community
Mobility Report [10] was used to aggregate anonymous mobility data from Google Maps.
The data showed how visitors to (or time spent at) places classified in each category changed
compared to the base value for each day of the week. The details of the reference values
and locations were as follows.
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The base value was the median value by day of the week from 1 March 2020 to 2 June
2020 (5 weeks) in Kumamoto Prefecture (the period just before people’s behavior changed
in response to COVID-19). Study locations include grocery stores, parks, train stations,
retail and entertainment (restaurants, cafes), residences, and workplaces.

3. Data Analysis

We visualized the data. Figure 1 displays the correlation between infected individuals
and hospital bed occupancy rate. The result indicated a direct correlation, highlighting
the critical influence of infection rates on the utilization of hospital resources. The bed
occupancy rate exceeded 50% six times throughout the entire period.
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Figure 1. COVID-19 infected individuals and bed occupancy rate.

This finding is noteworthy given the current state of the world, where the COVID-19
pandemic has strained healthcare systems worldwide. It underscored the importance of
taking measures to reduce the spread of the virus and ensure that hospital resources are
available to those who need them the most. We plotted the vaccination rate from the first to
the seventh dose over time (Figure 2). The data showed that up to the second dose, about
80% of the population was vaccinated. High vaccination rates are essential to curb the
spread of the virus and reduce the burden on healthcare systems. However, there were
still significant disparities in vaccination rates between different regions and demographic
groups to achieve herd immunity.
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We analyzed the relationship between mobility changes and average temperature.
Increasing human movement affected the number of new infections. The data for average
temperature and mobility changes is illustrated in Figure 3.
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Figure 3. Average temperature and mobility change over time.

This finding highlights the importance of considering external factors that influence
the spread of the virus such as mobility patterns and environmental conditions. It also
emphasizes the need for targeted interventions that consider these external factors to curb
the spread of the virus effectively. To better understand the data visualized above by
focusing on the correlation between infected individuals and average temperature, we
analyzed a linear trend, and the result suggested that higher temperatures were associated
with higher reported infections (Figure 4). This reflected seasonal variations in virus
transmission or testing behavior. The seasonal variation in virus transmission was more
significant than expected. It also underscores the importance of considering external factors
such as temperature when developing public health interventions to address the pandemic.
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Figure 4. Correlation between infected individuals and average temperature.

We analyzed the correlation between infected individuals and vaccination rate (1st dose)
as shown in Figure 5. The moderate positive correlation suggested that as the vaccination
rate increased, so did the number of reported infections. This could be due to increased
testing alongside vaccine rollout efforts or a reflection of peaks in reporting as vaccines
became available. This finding highlights the need to be cautious when interpreting data
related to vaccination rates and infection rates. While high vaccination rates are critical in
curbing the spread of the virus, external factors such as testing behavior must be taken into
account when interpreting these data.
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Finally, we investigated the correlation between residential mobility and infection
(Figure 6). Higher residential stay percentages coincided with lockdown periods and
were correlated with increased infection rates. The positive correlation was more visible,
implying that the higher residential stay percentage (during lockdowns) was associated
with more reported infections. This reflected the pattern of outbreaks leading to stricter
homestay measures. This finding underscores the importance of targeted interventions and
external factors such as mobility patterns to reduce the spread of the virus effectively. It
also highlights the need for policymakers to balance lockdown measures’ economic and
public health impacts to address the pandemic effectively.
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4. Model Development

We evaluated the effectiveness of the linear regression and Random Forest models
in predicting hospital bed occupancy rates. The models were analyzed using various
predictors, including mobility data, vaccination rates, weather conditions, and demographic
factors. Performance metrics such as Mean Squared Error (MSE) and R-squared values
are reported.

The four steps to evaluate the models included the following:

• Feature Selection: relevant features were selected based on the correlation and time
series analysis conducted in the previous session;

• Data Preparation: the data were split into training and testing sets to validate the
model’s performance;

• Model Training: the model was trained on the training data;
• Model Evaluation: the model was evaluated using appropriate metrics such as R-

squared and Mean Squared Error;
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4.1. Linear Regression Model

We constructed a linear regression model to predict the bed occupancy rate and
understand the direct linear relationships between the predictors, such as mobility changes,
the number of infected individuals, weather, the response variable, and the bed occupancy
rate. The model showed a mean square error (MSE) of 51.25. This value represents the
average squared difference between the actual and predicted bed occupancy rates. A lower
MSE indicates a better fit of the model to the data. Although the absolute number might
seem high, it is more relevant when compared to the variance in bed occupancy rates. The
R-squared (R2) was 0.834. This metric indicates how well the features in the model explain
the variability in bed occupancy rate. An R2 of 0.834 suggested that the model explained
approximately 83.4% of the variability in bed occupancy rate, which was good for complex
real-world data.

Next, we visualized the linear regression model results to explore its performance
and the nature of the errors. Figure 7 shows the result of checking the residuals (errors)
distribution to indicate nonlinearity or heteroscedasticity. The residuals are scattered
around the horizontal line at zero without apparent pattern or systematic deviation. This
indicates that the model does not suffer from nonlinearities or heteroscedasticity (i.e., the
variance of the residuals is constant across all levels of prediction). There are a few points
further from the line, indicating several predictions with higher errors, which could be
outliers or instances where the model assumptions fail.
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Figure 8 shows the prediction results vs actual data to assess the model. The points are
generally close to the diagonal line, showing that the predicted values are reasonably close
to the actual values across the range. The model performed consistently across different
values of the target variable with a slight deviation at higher actual values where the model
underpredicted the occupancy rate. The linear regression model performed well given
the complexity of the dataset and the relationships involved. However, models such as
Random Forest can capture subtler interactions and nonlinearities not accounted for by
linear regression.
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4.2. Random Forest Model

Random Forest is a robust ensemble method that performs well on complex datasets
by effectively handling nonlinearities and feature interactions. The model showed an MSE
of 48.02, indicating better results than the linear regression model. An R2 of 0.844 suggested
that the model explained approximately 84.4% of the variability in the bed occupancy rate,
which is an improvement over the linear model. The residuals are randomly distributed
around the zero line, suggesting that the Random Forest model does not exhibit systematic
errors (Figure 9). No clear patterns indicate heteroscedasticity or nonlinearity. A few
outliers exist where the model predictions deviate significantly from actual values due to
unusual cases or noise in the data.
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The points closer to the diagonal line indicate better agreement between the predicted
and actual values (Figure 10). The model was consistent across the range of bed occupancy
rates. However, there were under or over-predictions at higher rates. The Random Forest
model performed better than the linear regression model and effectively handled the data
in this study.
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against pandemics in urban settings. We compared the effectiveness of two models, linear
regression and Random Forest in predicting hospital bed occupancy rates. We evaluated
the models using various predictors, such as mobility data, vaccination rates, weather
conditions, and demographic factors. The Random Forest model showed an R2 of 0.844,
indicating that the model explained approximately 84.4% of the variability in the bed
occupancy rate. This was a significant improvement over the linear model.
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