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Abstract: In flexible production environments, challenges such as fluctuating customer demands
and machine performance degradation significantly complicate production scheduling. This study
introduces a neuro-evolution of augmenting topologies (NEAT) algorithm aimed at optimizing the
scheduling efficiency in flexible job shops by minimizing both maximum completion and average
lag times, taking into account variables like sporadic job arrivals, variable machining durations, tool
wear, preventive maintenance, and equipment failures. The NEAT algorithm harnesses the features
of dynamic flexible job shop scheduling problems (DFJSPs) to devise heuristic rules for job selection
and machine allocation, synthesizing these rules into coherent scheduling strategies. Employing the
entropy weight method, a fitness function for multiobjective optimization is formulated, facilitating
the enhancement of the neural network’s structural and nodal parameters through genetic algorithms.
Comparative analysis with four conventional scheduling rules indicates that the NEAT approach
consistently surpasses traditional methods, especially in managing complex disturbances. For
example, in a scenario involving 50 jobs and 20 machines, NEAT dramatically reduced the average
completion time to 142.14 s, markedly outperforming the 644.36 s achieved by the minimum operation
completion rate/shortest processing time (MOCR/SPT) approach. These findings underscore the
superiority of NEAT in dynamic scheduling contexts.

Keywords: flexible job shop; enhanced topological neural evolution; minimizing maximum completion
time; mean time delay

1. Introduction

With the rise and development of multispecies and small-lot production modes, mod-
ern manufacturing often involves multiple machines capable of processing a single opera-
tion. This is referred to as the flexible job-shop scheduling problem (FJSP). Initially proposed
and studied by Brucker et al., the FJSP extends the traditional job-shop scheduling problem,
which only requires determining the sequence of operations on a single machine. The FJSP
introduces the additional complexity of assigning operations to alternative machines, while
the dynamic flexible job-shop scheduling problem (DFJSP) further incorporates dynamic
events [1].

Researchers typically classify methods for solving the FJSP into exact and approximate
methods. Classic approximate methods include heuristic rules and metaheuristic algo-
rithms. Currently, heuristic methods for solving the FJSP are usually based on scheduling
rules designed to generate acceptable schedules within a short timeframe [2]. Common
heuristics include shortest processing time first (SPT), earliest due date first (EDD), first
in first out (FIFO), and least work remaining (LWR) [3]. Metaheuristic methods, which
are the main approaches for solving the FJSP, include genetic algorithms, artificial bee
colony algorithms, simulated annealing, and ant colony optimization. For example, Sun
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et al. proposed an improved variable neighborhood search hybrid genetic algorithm for
the FJSP considering machine workload balancing, which significantly outperformed other
algorithms [4].

With the advent of the big data era, the acquisition and processing of shop floor data
have become more accessible, and the emergence of deep reinforcement learning has pro-
vided researchers with innovative approaches to address shop floor scheduling problems
involving perturbation events. Many researchers have applied deep reinforcement learning
methods to solve the FJSP [5]. Luo introduced a new approach based on Deep Q-Network
(DQN) for flexible job-shop scheduling with new job insertions [6]. This method involves
designing six combinatorial scheduling rules as expert experience to assign jobs to feasible
machines and using seven features ranging from 0 to 1 to represent the production state at
each rescheduling point. Experimental results demonstrate that this method outperforms
classical heuristic rules and Q-learning methods in terms of superiority and generalizability.

Liu et al. proposed a hierarchical distributed architecture to address the flexible job-
shop scheduling problem with stochastic dynamic events [7]. They trained two types of
agents—allocation and ranking—based on the Double DQN algorithm and designed an
alternative reward shaping technique to enhance learning efficiency and scheduling effec-
tiveness. Experiments proved that these agents, whether used individually or integrated,
outperform existing scheduling strategies across a wide range of problem sizes. NEAT
is an evolutionary algorithm that simultaneously optimizes the structure and weights of
neural networks using genetic algorithms [8]. This research proposes an NEAT algorithm
that integrates the features of the DFJSP and designs heuristic rules for job selection and
machine allocation. These rules are combined as scheduling behaviors. Using the entropy
weight method, a multiobjective optimization fitness function is designed, and the neural
network’s topology and node weight parameters are optimized using genetic algorithms.
Experimental comparisons verify that the proposed method achieves superior objective
values compared to heuristic rules.

2. Problem Description

The flexible job shop scheduling problem (FJSP) requires each job to be processed on
specific machines, with each job consisting of multiple operations where each operation
can select from a set of machines. The processing time for each operation varies depending
on the machine. The aim of the FJSP is to assign machines for each operation and sequence
these operations to devise an effective scheduling scheme that minimizes key performance
indicators: the maximum completion time (cmax) and tardiness, where tardiness measures
the delay of job completion past its due date. In complex and variable manufacturing
environments, typical challenges such as random job arrivals, tool wear, and machine fail-
ures often disrupt the preplanned scheduling. This study proposes a dynamic scheduling
method for flexible job shops to adapt scheduling in real time.

Based on the problem description, it is assumed that the flexible job shop follows
the following assumptions in the production process: (1) Each machine can process only
one operation at a time; (2) each job is processed on only one machine at any given
moment; (3) operations within the same job follow a specified sequence: a subsequent
operation cannot begin until the previous one has completed, but operations across different
jobs are not sequence-dependent; (4) all jobs have the same priority in the initial state;
(5) all machines are available at the start of scheduling; (6) machine setup times and inter-
machine transportation times are significant and are included in the processing times of
each operation to reflect their impact on the scheduling efficiency accurately.

3. Dynamic Scheduling Method for Flexible Job Shop Based on NEAT Algorithm

The NEAT deep reinforcement learning method does not require a predefined network
structure, allowing the neural network structure to evolve automatically. Based on the
characteristics of flexible job shops and the NEAT deep reinforcement learning method, an
NEAT-based dynamic scheduling method is proposed, as shown in Figure 1.
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3.1. Algorithm Pseudocode

In the first module, the system actively simulates dynamic events occurring within
the workshop environment, such as the arrival of new jobs and the completion of existing
tasks. It continuously updates the state of the workshop in real time, adapting to changes
and disruptions. A well-trained neural network plays a crucial role in this module, where
it analyzes the current state of the shop floor and determines the most effective scheduling
actions based on predefined criteria and past learning. This process is ongoing and does
not cease until either all jobs have been successfully processed or the system reaches a
predetermined limit of decision-making cycles. At the conclusion of each cycle, the system
evaluates the performance of the neural network using a fitness value, which reflects the
efficacy and efficiency of the decisions made by the system. This feedback loop helps
in fine-tuning the neural network over time, improving its accuracy and reliability in
decision-making.

The second module implements the NEAT algorithm (Algorithm 1), responsible for
the evolution of neural networks. Within each generation, the system first calculates the
distances between individual neural network entities within the population. It classifies
the population into species based on a species compatibility threshold and performs
selection, mutation, and crossover operations to generate new neural networks. Moreover,
these newly formed networks are tested through simulated interactions with the workshop
environment, and their fitness is assessed accordingly. Subsequently, networks that perform
poorly are culled, and the population is updated to enhance overall performance. This
iterative process is carried out until a termination condition is met, culminating in the
output of the optimally performing neural network.

3.2. State Space

Based on the characteristics of flexible job shops, the workshop environment is de-
scribed by the state features of jobs and machines, denoted as S =

{
DDC

i , RO
i , RJ

i , tS
i , tA

k , tRUL
k ,

tW
k , tR

k , uri, tA
ij

}
. Here, DDC

i is the difference between the due date of the job in the buffer
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area and the decision time (current time), and RO
i is the completion rate of the process

at the decision moment. It is expressed as the ratio of the number of processes that have
been processed on the job to the total number of processes on the job. RJ

i is the overall job
completion rate at the decision time, tS

i is the slack time of the job, tA
k is the cumulative

processing time of the machine, tRUL
k is the remaining useful life of the tool corresponding

to the machine, tW
k is the processing completion time of the job scheduled on Mk, tR

k is the

remaining processing time for the job on machine Mk, uri is the urgency of job i, and tA
ij is

the expected processing time for the next operation of the job waiting in the buffer on an
idle machine.

Algorithm 1 NEAT-based dynamic scheduling algorithm for flexible job shops

Initialize task sequence and state S
while termination condition is not met:

# Module 1: Agent and Workshop Environment Interaction Learning
while not all jobs are processed and t < maximum decision count:

Update state on new job arrivals or completions
if job completed:

Update production sequence and job completion time
t += 1
Update the instantaneous state St and input to neural network P
Neural network P outputs Q values four scheduling actions:
Choose action a = argmax(Q)
Execute action at

if t < maximum decision count:
Calculate the fitness value G of neural network P

else:
G = float(‘-inf’)

# Module 2: NEAT Neural Network Population Evolution
for each generation g:

for each network P:
Calculate distances, classify into species
Select top individuals for new generation
Mutate and cross to produce new networks

Evaluate fitness of new and offspring networks using “Interaction Learning”
Eliminate low fitness individuals, update species
Output optimal network P_best

3.3. Action Space

The action space comprises the set of actions an agent can choose at decision points,
triggered by process completion or new job arrival. Actions are selected based on the shop
floor state and can be broken down into two subactions: (1) selecting the next job to process
and (2) selecting a suitable machine. Two heuristic rules are designed for each sub-action,
combining into four scheduling actions:

Action 1: Minimum operation completion rate (MOCR): Selects the job with the lowest
operation completion rate. If multiple jobs are selected, one is chosen randomly.

Action 2: Shortest processing time on idle machine (SPTIM): Selects the job with the
shortest next operation time on an idle machine. If multiple jobs are selected, one is chosen
randomly.

Action 3: Shortest processing time (SPT): This action prioritizes the selection of the
machine, offering the shortest processing time for the forthcoming operation. In instances
where several machines present identical shortest processing times, a machine is selected
at random to ensure equitable machine utilization and operational efficiency.

Action 4: Estimated earliest complete (EEC): Selects the machine expected to complete
the process earliest. If multiple machines meet this condition, the machine that will be
available latest is chosen.
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Action 5: Unselect job (UJ): This action is employed when no job is chosen for process-
ing due to various constraints, such as a lack of jobs in the staging area or the absence of
idle machines capable of processing the jobs. Action 5 is not viable if all machines are idle
while jobs are present in the staging area.

The selection of action 5 obeys the following constraints: (1) If a new decision point
is triggered and the staging area is empty, action 5 must be selected. (2) If a new decision
point is triggered with jobs present in the staging area, but no machines are available or
capable of processing, action 5 must be selected. (3) If a new decision point is triggered,
jobs are available in the staging area, and all machines are idle, action 5 cannot be selected.

3.4. Fitness Function

To achieve the objectives of minimizing both the maximum completion time and total
tardiness in a flexible job shop, the entropy weighting method is utilized to convert these
scheduling goals into quantifiable scores [9]. The method is detailed as follows:

(1) Defining Evaluation Objects and Criteria

Each action within the job shop is considered as an evaluation object. The set of
x evaluation objects forms the scheduling plan set S = {S1, S2, S3, · · · , Sx}, There are y
evaluation criteria, forming the criteria set I =

{
I1, I2, I3, · · · , Iy

}
, with the value of criterion

Iy for plan Sx denoted as Vxy Thus, the matrix for the scheduling criteria is

V =

V11 · · · V1y
...

. . .
...

Vx1 · · · Vxy

 (1)

(2) Normalization

To address the issue of unequal ranges among criteria, normalization is applied where
smaller values indicate better performance. The normalization formula is given by

V′
ab =

Vmax − Vab
Vmax − Vmin

(2)

(3) Entropy Calculation of Criteria

Firstly, we compute the proportion of each criterion value for each scheduling plan
relative to all plans for that criterion:

Vab =
V′

ab
∑x

a=1 V′
ab

(3)

Then, we calculate the entropy for each criterion:

Eb = −∑x
a=1 Vabln Vab

ln x
(4)

(4) Weight Calculation of Criteria

After determining the entropy values, we calculate the weights for each criterion:

ωb =
1 − Eb

y − ∑
y
b=1 Eb

(5)

(5) Scoring of Scheduling Plans

Using the normalized values and weights, the score for each scheduling plan is
computed as follows:

fa = ∑y
b=1 ωb × V′

ab (6)
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(6) Scoring of Scheduling Plans

The objective value for each plan is derived using the following formula:

fa = ω1 × Va1 + ω2 × Va2 (7)

(7) Scoring of Scheduling Plans

To enhance distinction between plans and improve the effectiveness of the training for
the agents, the fitness function is defined as

F =
1
fa

(8)

4. Numerical Example and Analysis
4.1. Parameter Settings

In this paper, the number of machines m and the number of jobs n classify the problem
into small and medium scales [10]. The number of processes si, machining time tO

ijk, arrival

time TA
i , and delivery time TD

i of the jobs are generated based on the uniform distribution,
and the experimental parameters are shown in Table 1.

Table 1. Experimental parameters for the dynamic scheduling problem in flexible job shop.

Problem m n si tO
ijk TA

i TD
i

Small-scale 2, 5, 10 10 U [1, 5] U [1, 50] U [1, 10] U [150, 250]
Medium-scale 5, 10, 20 50 U [1, 10] U [1, 50] U [1, 50] U [400, 700]

4.2. Results Analysis

According to the design of the algorithm parameters in Table 1, different scale schedul-
ing problems under perturbation events are solved and compared with the designed
scheduling rules, and the mean and standard deviation data of the objective values of
different dynamic scheduling methods under perturbation events are shown in Table 2. The
NEAT algorithm consistently shows lower mean values across almost all configurations
compared to other methods (MOCR/SPT, SPTIM/SPT, MOCR/EEC, SPTIM/EEC). This
indicates a more efficient handling of dynamic scheduling tasks, especially under complex
conditions marked by simultaneous disturbances. The standard deviation values associated
with NEAT are significantly lower compared to other methods in most cases. This suggests
that NEAT not only performs better on average but also offers more stability and reliability
in its performance under perturbing conditions.

Table 2. Objective values (mean/std dev) for three simultaneous perturbing events.

n m NEAT MOCR/SPT SPTIM/SPT MOCR/EEC SPTIM/EEC

10
2 446.50/70.7 3030.4/337.98 2097.71/589.3 2768.76/613.09 1832.85/533.22
5 90.63/5.26 162.91/20.66 129.54/14.23 185.25/18.76 117.48/10.14

10 63.68/3.19 76.46/8.21 59.29/9.74 78.31/8.64 73.92/8.54

50
5 2852.62/31.71 4966.13/522.89 3703.33/675.08 4613.15/732.89 4114.33/747.37
10 431.52/62.15 2051.28/357.46 1858.69/464.74 1993.52/530.72 1846.08/425.59
20 142.14/5.88 644.36/241.5 170.48/9.79 945.21/300.1 169.55/9.07

In the dynamic scheduling problem that considers three types of disturbances simulta-
neously, the NEAT deep reinforcement learning approach continues to achieve superior
average objective values. Moreover, in scheduling problems with limited machine re-
sources, the objective values obtained by the NEAT deep reinforcement learning method
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significantly surpass those of heuristic rules. The standard deviation of the NEAT method
is also more favorable compared to heuristic rules.

5. Conclusions

For the dynamic scheduling problem in flexible job shops with random job arrivals,
tool degradation, and machine breakdowns, an NEAT-based method was studied. This
method combines genetic algorithms and neural networks to optimize the network struc-
ture and parameters. The trained NEAT agent efficiently solves large-scale, randomly
generated problems. Compared to heuristic rules, the NEAT-based method achieves better
objective values and adaptively selects the best scheduling rules, offering an effective
approach for practical workshop scheduling.
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