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Abstract: In this paper, four control strategies are developed and evaluated for the trajectory-
tracking of a two-degree-of-freedom SCARA-type robotic manipulator: (i) a proportional-derivative
controller (PD), (ii) a proportional-derivative controller with friction compensation (PD + G), (iii) an
inverse-dynamics controller and (iv) a sliding-mode controller with a dynamic model (SMCD). These
controllers are implemented in a dynamic model of a manipulator robot, and their performance is
assessed based on trajectory-tracking accuracy and robustness against disturbances. Robustness tests
are conducted by varying the parameters of the dynamic model of the robot. The performance of
each controller is analyzed using the Integral Squared Error (ISE) and the Integral of Time-weighted
Squared Error (ITSE) indexes to compare their effectiveness. This study offers a comprehensive
evaluation of each control strategy, demonstrating that the SMCD achieves the optimal balance
between accuracy and disturbance robustness.

Keywords: inverse dynamics; manipulator; trajectory-tracking; PD controller; robustness; SMC

1. Introduction

Robotic manipulators are fundamental components of industrial automation and
play a critical role in tasks that require precision, repeatability, and flexibility. However,
the precise control of these systems remains a complex challenge and of interest to re-
searchers, especially when faced with model uncertainties, external disturbances, and
dynamic motions [1]. Several control strategies have been developed to control a robotic
manipulator [2,3].

There are controllers as in [4], which employ improved classical techniques such
as adaptive PID that do not depend on the model and are robust to load variations.
However, nonlinear controllers, such as sliding-mode controllers (SMCs), efficiently
improve the tracking of the robotic manipulator [5]. The proposal of [6] focuses on the
improvement of chattering by using three SMCs with the sign function, saturation, and
hyperbolic tangent function—the SMC with saturation had the best results. In [7], an
SMC + PD is implemented with an algorithm that does not require knowledge of the
robot model, so the SMC is induced to consider the robot dynamics as an uncertainty
and avoid using the model. It is worth noting the superiority in the efficiency of SMCs
over classical controllers such as PDs, whose steady-state error is notoriously higher
compared to an SMC-type controller [8]. SMCs have also been combined with fuzzy
techniques to improve controller performance [9]. One of the challenges of SMCs is
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implementing techniques to mitigate the chattering effect through controller stability
analysis using Lyapunov theory [10] and other SMC controls with backstepping [11]. In
the work presented in [12], it is observed that the determination of an unsteady sliding
surface improves the implemented control law for the sliding-mode controller; however,
the control is applied to the robot joints and not to the trajectory generation. In [13–16],
emphasis is placed on the implementation of a robust controller based on the sliding
mode for the trajectory-tracking of a robotic manipulator; however, these works do not
present a robustness analysis of the variation present in the model.

The main contributions of this work are that the controller works on the end-effector
error and not on the joints, allowing us to take advantage of the redundancy of the manipu-
lator. Another contribution corresponds to the design of an SMC that is based on the robot
model, thus obtaining a controller robust to model variations, unlike other works where the
perturbations are considered in the references or at the output and not with regard to the
model. Also, in the design, the discontinuous component has been considered as a variant
of the sigmoid to improve the chattering of the system. Another proposal of this work is
the comparison through the development and evaluation of four control strategies for the
trajectory-tracking of a SCARA-type robotic manipulator: (i) a proportional-derivative (PD)
controller; (ii) a PD controller with friction compensation (PD + G); (iii) an inverse-dynamics
controller; and (iv) a sliding-mode controller with a dynamic model (SMCD). This includes
the formulation of the cinematic and dynamic model of the manipulator robot and the
design of the SMCD, which includes an optimized sliding surface and a control law based
on Lyapunov’s theory, ensuring superior robustness to system perturbations. The valida-
tion of the proposed approach is performed by a simulation of the robotic manipulator,
including trajectory algorithms, and the implementation of several test scenarios that allow
for a comprehensive evaluation of the position error. The use of the Integral Squared Error
(ISE) and Integral of Time-weighted Squared Error (ITSE) indexes allows for measuring the
performance of the controllers, providing a quantitative comparison.

This paper is organized as follows: Section 2 presents the modeling of the SCARA-
type manipulator robot; Section 3 describes the four implemented controllers; Section 4
outlines the simulation level tests of the controllers and the results of the system under
perturbations; and finally, Section 5 provides the conclusions obtained from the results of
the development and evaluation of the controllers.

2. Modeling

The manipulator robot used in this work is of an industrial type and corresponds to a
SCARA-type structure (model BOSCH SR-800 of German origin), which has two degrees
of freedom. The implementation of the four control strategies requires knowledge of its
kinematic and dynamic models, which are described below.

2.1. Kinematic Model of the Manipulator Robot

The kinematic model of the two-degree-of-freedom SCARA manipulator shown in
Figure 1 relates the position of the operating end in the (x, y) plane to the variables of the
two joints q1, q2. (x, y) is the referential plane of the end-effector position, and q1, and q2,
are the angular positions of joint 1 and 2, respectively. The robot parameters are the length
of the first link, l1 = 0.445 m, and the length of the second link, l2 = 0.355 m, [17]. The
kinematic model of the robot is defined by

x = l1cos(q1) + l2cos(q1 + q2); y = l1sin(q1) + l2sin(q1 + q2) (1)

The inverse kinematics of the robot can be obtained by means of geometric analysis:

q1 = tan−1
( y

x

)
− tan−1

(
l2 − sin(q2)

l1 + l2cos(q2)

)
(2)
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q2 = cos−1

(
x2 + y2 − l2

1 − l2
2

2l1l2

)
(3)
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From the derivation of (1), the kinematic model can be represented as[ .
∼
x

.
∼
y
]T

= J(q)
[ .
∼
q1

.
∼
q2

]T
(4)

[ .
∼
x

.
∼
y
]′

is the derivative of the error in x and y, respectively;
[ .
∼
q1

.
∼
q2

]T

is the derivative

of the angular error of joint 1 and 2; and J(q) is the Jacobian matrix, which is given by

J(q) =
[

−(l1sin(q1) + l2sin(q1 + q2)) −l2sin(q1 + q2)
(l1cos(q1) + l2cos(q1 + q2)) l2cos(q1 + q2)

]
(5)

2.2. Robot Dynamic Model

The dynamic model for the SCARA robotic arm with two degrees of freedom is
defined as

..
q = M−1(q)

(
τ − C

(
q,

.
q
) .
q − f

( .
q
))

(6)

τ is the vector of torques of joints 1 and 2, respectively; M(q) is the inertia matrix of
the manipulator robot; C

(
q,

.
q
)

is the matrix representing the centrifugal and Coriolis forces;
and f

( .
q
)

is the vector representing the effects of viscous friction. The dynamic parameters
of the Bosh SR-800 manipulator robot are obtained from [17].

M(q) =
[

1.7277 + 0.1908cos(q2) 0.0918 + 0.0954cos(q2)
0.0918 + 0.0954cos(q2) 0.9184

]
(7)

C(q,
.
q) =

[
31.8192 − 0.0954sin(q2)

.
q2 −0.0954sin(q2)

( .
q1 +

.
q2
)

0.3418sin(q2)
.

q1 12.578

]
(8)

f (
.
q) =

[
1.0256 sig

( .
q1
)

1.7842 sig
( .
q2
)] (9)

3. Controllers

Four control strategies for trajectory-tracking the SCARA-type manipulator robot are
presented: (i) a proportional-derivative (PD) controller, (ii) a PD controller with friction
compensation (PD + G), (iii) an inverse-dynamics controller, and (iv) a sliding-mode
controller with a dynamic model (SMCD).

3.1. Dynamic Sliding Mode Controller (SMCD)

The controller in sliding mode with a dynamic model allows us to improve the
performance of the system. Since it considers the dynamics of the manipulator, it will allow
us to reduce the position error in the steady state, which means

∼
p → 0 as time tends to
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infinity lim
t→∞

∼
ρ = 0 ∈ Rn. The sliding-mode control structure with a dynamic model (SMCD)

is defined as the following:
τSMCD = τcD + τdD (10)

where τSMCD describes the SMCD control action; τcD represents the continuous part; and
τdD represents the discontinuous part of the control action. Figure 2 shows the SMCD
controller scheme, where εd represents the robot’s desired trajectory and ε represents the
trajectory described by the robot.
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The sliding surface is defined by

s = λp
∼
p + λi

∫
∼
pdt + λd

.
∼
p (11)

where
∼
p = [qd − q] is the end-effector position error; qd represents the desired end-effector

positions; q is the current position of the robot end effector; λp, λi, and λd are the coefficients
of the proportional, integral, and derivative parts of the sliding surface, respectively.
.
∼
p =

[ .
qd −

.
q
]

is the error of the end-effector velocity;
.
qd is the desired velocity of the end

effector;
..
p =

[ ..
qd −

..
q
]

is the acceleration error;
..
qd is the desired end-effector acceleration;

and
..
q is the acceleration of the robot end-effector. Deriving (11) and substituting

..
p =

..
qd −

..
q,

we obtain (12):
.
s = λp

.
∼
p + λi

∼
p + λd

( ..
qd −

..
q
)

(12)

Substituting (6) in (12), we obtain the following expression:

.
s = λp

.
∼
p + λi

∼
p + λd

( ..
qd − M−1(q)

(
τ − C

(
q,

.
q
) .
q − f

( .
q
)))

(13)

To determine τcD, we assume τdD = 0 and set
.
s = 0, obtaining (14):

τcD = M(q)

λp

.
∼
p

λd
+

λi
∼
p

λd
+

..
qd

+ C(q,
.
q)

.
q + f (

.
q) (14)

For τdD , the Lyapunov candidate function is defined as V = 1
2 sTs. Deriving V

with respect to time,
.

V = sT .
s is obtained. Substituting (12) and in a closed loop,

τ = τSMCD = τcD + τdD , and replacing (14), we obtain the following:

.
V = sT

(
−M−1λdτdD

)
(15)

To ensure that
.

V < 0, τdD is defined as

τdD = λ−1
d M δ

s
|s|+ β

(16)
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where δ and β represent a positive scalar; sign(s) is a sign function. We substitute (16)
in (15).

.
V = −sTδ

s
|s|+ β

(17)

This guarantees that
.

V < 0; therefore, s → 0 as t → ∞ . Deriving (11) and setting it
equal to zero, we obtain the following:

0 = λd

..
∼
p + λp

.
∼
p + λi

∼
p (18)

The roots of the second-order system can be defined as r =
−λp−

√
λ2

p−4λdλi

2λd
. In this

second-order system, to have different real roots, it must be satisfied that λ2
p > 4λdλi; then,

∼
p → 0 with t → ∞ .

3.2. Inverse-Dynamics Controller

The control law used to implement the model is taken from [18], and is defined as
follows:

τ = M(q)
(

..
qd + Kv

.
∼
q + Kp

∼
q
)
+ C(q,

.
q)

.
q + f (

.
q) (19)

where
.
∼
q =

[ .
qd −

.
q
]

is the end-effector velocity error;
.
qd is the desired end-effector speed;

.
q

is the manipulator robot end-effector speed;
∼
q = [qd − q] is the end-effector position error;

and Kv and Kp represent the velocity and position gain matrices, respectively.

3.3. Controller PD + G

For the PD + G controller, the following control law given in [19] is used, described by

τ = Kv

.
∼
q + Kp

∼
q + f

( .
q
)

(20)

3.4. Controller PD

For the PD controller, we use the control law given in [19], which is defined as follows:

τ = Kv

.
∼
q + Kp

∼
q (21)

4. Results

In order to compare the four controllers, the tests of all the controllers consist of
the manipulator robot tracking a trajectory of a five-petal flower. The parameters of
the desired trajectory are as follows: r = 0.1 + 0.1 cos(0.25t); xd = r cos(0.05t) + 0.4; and
yd = r sin(0.05t)+ 0.4, where εd = [xd yd] and ε = [x y]. The parameters of the proportional

and derivative actions of the PD controller are Kp =

[
40 0
0 40

]
and Kv =

[
10 0
0 10

]
, and

those of the PD + G controller are Kp =

[
40 0
0 20

]
and Kv =

[
20 0
0 14

]
. The parameters of

the proposed SMCD are λp = 0.1, λi = 70, λd = 0.5, β = 0.6; and δ = 1.2. To analyze the
behavior of the controllers, it is proposed to develop two experiments. A time of 130 s is
considered the simulation duration of Experiment 1, and 260 s is the simulation duration
of Experiment 2. In Experiment 1, the desired trajectory is implemented without any
disturbance. In Experiment 2, the desired trajectory is considered with disturbance at time
t = 130 s. For both experiments, two error-tracking indices are evaluated: ISE and ITSE.
The simulation platform used in this work is Matlab version R2022B.
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4.1. Experiment 1

Using the dynamic model from (6), each of the four controllers was implemented.
Figure 3 shows the trajectory-tracking performance achieved by each controller. The results
show that the trajectory-tracking signals described by the PD controller exhibit the highest
error, while the SMCD achieves the most precise trajectory-tracking. Figure 4 shows the
position errors for each controller. From the results obtained, the SMCD performs better
than the others, since it has a lower amplitude and the error is visually negligible compared
to the PD, PD + G, and inverse-dynamics controllers.
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Figure 4. Position errors were obtained for each controller without disturbance.

Table 1 shows the error-based performance indices (ISE and ITSE) for the four con-
trollers. From the results shown, it is observed that the values obtained for the SMCD have
the lowest indices, so it is verified that it is the best controller in terms of trajectory-tracking
without disturbance. On the other hand, the PD controller is the least accurate due to its
high error rates.
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Table 1. Performance index based on trajectory-tracking error with each type of controller.

Error-Based Performance Index PD PD + G Inverse Dynamics SMCD

X-axis Y-axis X-axis Y-axis X-axis Y-axis X-axis Y-axis

ISE 0.05944 0.1115 0.0584 0.1068 0.0334 0.0624 0.00503 0.0125

ITSE 1.913 2.99 0.6313 0.8451 0.5995 0.9947 0.00150 0.00083

4.2. Experiment 2

For the robustness analysis, a perturbation is incorporated into the matrix M(q)
obtained in (7); this disturbance factor is referred to as FP. For the analysis with perturbation,
each controller has a different perturbation factor, FP. However, the disturbance in all
controllers is considered to occur at the time instant of 130 s.

M(q) =
[

1.7277 + 0.1908cos(q2) 0.0918FP + 0.0954cos(q2)
0.0918FP + 0.0954cos(q2) 0.9184FP

]
(22)

Figure 5 displays the trajectories obtained by incorporating the maximum allowed
disturbance magnitude for each controller without compromising their execution capability.
The results indicate that the SMCD exhibits superior performance in trajectory-tracking
under disturbance conditions. In contrast, the other controllers—PD, PD + G, and inverse
dynamics—experience significant destabilization due to the disturbance, and they deviate
notably from the desired trajectory.
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Finally, Figure 6 presents the position error values obtained by introducing the distur-
bance into the system. An analysis of the different results reveals that the error magnitude
increases at the moment of disturbance occurs; despite the control actions of the different
controllers, they fail to minimize the position error. The ability of each controller to handle
the maximum disturbance without losing control and becoming unstable was evaluated.
As a result, we found that the PD controller can tolerate a disturbance of FP = 110, the
PD + G controller can tolerate FP = 90; the inverse-dynamics controller can tolerate
FP = 82, and the SMCD can tolerate FP = 163, making the SMCD the most robust
against disturbances.
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5. Conclusions

The SMCD demonstrated significant superiority in trajectory-tracking the robotic
manipulator, outperforming the other evaluated controllers both under normal conditions
and with disturbances. This controller exhibited the lowest error indices (ISE and ITSE)
and maintained good accuracy, even in the presence of external disturbances, highlighting
its robustness and effectiveness for applications in dynamic environments. In contrast,
the inverse-dynamics controller showed good performance under normal conditions but
displayed notable limitations in handling disturbances, suggesting that it may not be
suitable for robotic systems that require high precision and operate in dynamic environ-
ments. Meanwhile, the PD and PD + G controllers experienced considerable increases in
position error when faced with disturbances, resulting in inferior performance compared
to the SMCD. These results underscore the importance of considering robustness and
disturbance-recovery capability in the controller design of robotic systems intended to
operate in non-ideal environments.
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