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Abstract: One of the critical challenges in mobile robotics is obstacle avoidance, ensuring safe
navigation in dynamic environments. In this sense, this work presents a comparative study of two
intelligent control approaches for mobile robot obstacle avoidance based on a fuzzy architecture.
The first approach is a neuro-fuzzy interface that combines neural networks’ learning capabilities
with fuzzy logic’s rule-based reasoning, offering a flexible and adaptable control strategy. The
second is a classic Mamdani fuzzy system that relies on human-defined fuzzy rules, providing
an intuitive approach to control. A key contribution of this work is the development of a fast
comprehensive, model-based dataset for neural network training generated without the need for
real sensor data. The results show the evaluation of these two systems’ performance, robustness,
and computational efficiency using low-cost ultrasonic sensors on a Pioneer 3DX robot within the
Coppelia Sim environment.

Keywords: ANFIS; Mamdani; obstacle avoidance; fuzzy; mobile robots; intelligent control systems;
IoT; ultrasonic sensors; synthetic dataset; CoppeliaSim

1. Introduction

Mobile robots have become increasingly prevalent in various applications, from in-
dustrial automation to personal assistance. One of the critical challenges in mobile robotics
is obstacle avoidance, which ensures the safe navigation of the robot in its environment [1].
Conventional control techniques have limitations in dealing with the inherent uncertainties
and complexities of real-world environments [2].

Conventional, model-based control techniques often struggle to handle the inherent
uncertainties and complexities of real-world navigation. These methods often rely on
precise environmental models and struggle to adapt to unexpected obstacles or changing
conditions [3]. To address these challenges, intelligent control systems, such as fuzzy logic
and adaptive neuro-fuzzy inference systems, have emerged as promising solutions [4–6].
Fuzzy logic, inspired by human reasoning, excels in dealing with vagueness and linguistic
information [7], while neural networks offer powerful learning capabilities for adapting to
dynamic environments [8].

In this work, we present a comparative study of two intelligent control approaches
for mobile robot obstacle avoidance: the adaptive neuro-fuzzy inference system (ANFIS)
and the Mamdani fuzzy system. The ANFIS combines the learning capabilities of neural
networks with the rule-based reasoning of fuzzy logic, offering a more flexible and adapt-
able control strategy [4]. Adaptive neuro-fuzzy inference system leverages the advantages
of fuzzy logic to handle uncertainty in sensor data, ensuring smooth and intuitive control
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actions, while simultaneously employing the adaptive learning capabilities of neural net-
works to optimize performance over time [9]. The Mamdani fuzzy system, on the other
hand, relies on a set of human-defined fuzzy rules to make decisions, providing a more
intuitive approach to control [5]. Both intelligent control methods have been extensively
studied and applied in the field of mobile robotics, and each approach has its own strengths
and limitations [10]. This comparative study aims to evaluate the performance, robustness,
and computational efficiency of these two control systems in the context of mobile robot
obstacle avoidance, providing valuable insights for researchers and engineers working in
this field.

Interestingly, while the adaptive neuro-fuzzy inference system offers greater adaptabil-
ity and learning capabilities, the Mamdani fuzzy system may be more suitable for scenarios
where the underlying system dynamics are well understood, and the control objectives
can be easily translated into a set of fuzzy rules [11]. The choice between the adaptive
neuro-fuzzy inference system and the Mamdani fuzzy system for mobile robot obstacle
avoidance depends on the specific requirements of the application, the available data, and
the level of uncertainty in the environment [12]. Autonomous robots are quite commonly
used but the scale is limited to repeated tasks or indoor applications in most cases. For
autonomous vehicles, the sensor technology must be made more accommodating since a
diversity of possibilities occurs which populates into a huge dimensional problem [4]. In
this context, the adaptive neuro-fuzzy inference system and the Mamdani fuzzy system
can play a crucial role in enhancing the obstacle avoidance capabilities of mobile robots,
paving the way for more reliable and versatile autonomous systems.

In this work, we assess the performance of ANFIS and classic Mandami fuzzy con-
trollers for obstacle avoidance in unknown scenarios using the measurements given by
low-cost ultrasonic sensors as sensing data. Both controllers use as a base trajectory con-
troller a fuzzy cluster arrangement that handles the heading angle towards the desired
goal and moves the robot with a constant velocity. It is worth mentioning that this work
deals with static obstacle avoidance within a controlled environment. The development
of a fuzzy neural network for the avoidance of moving (dynamic) obstacles, as well as a
performance comparison with other types of controllers, is part of future research and will
be presented in future works. A key contribution of this work lies in the development of a
comprehensive, model-based dataset for training the ANFIS controller. This dataset is gen-
erated with random data within a range that emulates the low-cost sensor measurements,
a combination of avoidance rules, and the model of the robot. The resultant is a synthetic
dataset that does not require real sensor data, enhances the ANFIS training, and can be
adapted to the robot’s geometry and sensor models.

The performance assessment of both fuzzy topologies was carried out in simulation
using the Pioneer DX3 robot within Coppelia Sim. The fuzzy systems were assembled and
trained in Matlab which communicates with Coppelia Sim in real time. For the benefit
of the community, the dataset generation along with the simulation files are available at
https://github.com/WChamorro/Neuro-Fuzzy-Obstacle-Avoidance.git (accessed on 7
November 2024).

The rest of the paper is organized as follows: Methodology presents a detailed
overview of the adaptive neuro-fuzzy inference system and the Mamdani fuzzy system,
including their key components and decision-making processes applied to a robot to avoid
obstacles considering data from ultrasonic sensors. Then, the results are presented with a
discussion about them, and finally, relevant conclusions are presented.

2. Methodology

Adaptive neuro-fuzzy inference system (ANFIS) and classic Mamdani fuzzy systems
represent two distinct approaches to modeling and control. ANFIS integrates the learning
capabilities of neural networks with the interpretability of fuzzy logic, providing a powerful
tool for handling complex, non-linear problems through adaptive learning [13]. In contrast,
Mamdani fuzzy systems rely on a rule-based approach, where human expertise is encoded
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into a set of linguistic rules, offering intuitive and easily understandable solutions. The
following sections bring details about the fuzzy architecture and the dataset generation for
training the ANFIS.

2.1. Neuro-Fuzzy Inference System

The base robot’s behavior is managed by a Sugeno fuzzy clustering approach, as
shown in Figure 1a,c. This controller returns three sets of velocity: low, zero, and high
based on the heading angle (HA). It is worth mentioning that the robot knows where the
goal position is, and its 2D relative pose (to the starting point). The fuzzy clustering will be
active when the sensors do not detect a closer obstacle [14].
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The ANFIS architecture shown in Figure 1b,e drives the robot’s wheel speeds based on
the inputs from each ultrasonic sensor: Right Sensor (RS), Central Sensor (CS), Left Sensor
(LS), and the heading angle. This scheme was replicated for both wheels, and it was built
with three sigmoidal membership functions for the sensors, and four for the heading angle
for a more precise control. The Mamdani architecture in Figure 1d will be detailed in the
following sections.

Model-Based Dataset Generation

The training dataset was created with uniformly generated random values represent-
ing the sensor readings. Low-cost ultrasonic sensors were used in this study to measure
distance to the obstacles in meters. The shorter this distance, the more significant the
control action required from the robot, whether it involves continuing to move forward,
turning right, or turning left. In this work, we use the model of the sensor HC-SR04, which
has a range from 2 to 400 cm and a 15-degree detection angle. The detection range was
limited between dmin and dmax as shown in Figure 2a. This configuration ensures the robot
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can anticipate and avoid obstacles in advance, it also helps to prevent the sensors from
receiving noisy data or errors due to distant objects. The desired heading angle is computed
as θ = atan2

(
targety, targetx

)
, since we know the goal position noted with coordinates

(targetx, targety).
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The dataset was generated in Python and requires only a specific set of parameters
that depend on the geometry of the problem. The dataset is composed of the sensor data
the heading angle, and the estimated right and left wheel velocities. The sensor data were
randomly generated with a 25% bias focused on shorter distances and small alignment
angles, as shown in Figure 3. The biased data are intended to enhance robot training for
navigating tight spaces and handling multiple obstacles. It is worth mentioning that the
data generated is normalized within their respective ranges to have an approach as general
as possible.
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The wheel speeds in the dataset are estimated considering the robot’s geometry and
the sensor data following [15], as

ωR/L =

(
1 ± bθ

2LT

)
v
R
[rad/s] (1)

where b is the distance between the robot’s wheels, and R the radius of each wheel. LT is
the normalized robot’s curvature length computed as follows:

LT = d ·
(

LTmax − LTmin

)
+ LTmin [m] (2)

recall that LT is a normalized expression between LTmin and LTmax , which depends on the
geometric characteristics of the robot as illustrated in Figure 2a. The remaining term v, is
the estimated robot’s linear velocity computed as follows:

v = vmax −
(

Gq ·
(vmean

2

))
[m/s] with Gq = 1 − 4d(1 − d) (3)

where Gq is a quadratic function that uses the sensor-measured distance d. Gq models a
desired velocity boost if the sensors detect an obstacle closer to dmin or dmax, or a moderate
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speed in the mid-range. This behavior allows us to reach the goal as fast as possible if we
have a clear path or produce faster reactions in the presence of an obstacle.

In the presence of an obstacle, the robot should decide which direction must be
followed. These decisions are predefined by providing the knowledge with the statement
of the possible avoidance rules pictured in Figure 2b. Cases 1 and 2 are the simplest to
interpret because the robot must move away from the obstacle while approaching the target,
without compromising trajectory. In cases 3 and 4, the target is in the same orientation as
the obstacle, so a change to the desired angle is made to ensure the robot does not move
too far from the obstacle, thereby avoiding trajectory compromise. For cases 5 and 6, the
front sensor will detect the closest distance, so the position of the target will determine the
robot’s movement. Case 7 applies to the remaining cases, when the robot is aligned with
the target, involving a real-time condition that consists of changing the orientation angle,
forcing the wheels to make a sharper turn, and preventing the robot from colliding with
the obstacle.

The dataset was generated using a Python script yielding synthetic adjustable data to
train the ANFIS. Figure 4 shows the result of the training process that was carried out with
the neuro-fuzzy designer in MATLAB 2024A [16].
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The generated dataset for the neuro-fuzzy scheme was split into 80% for training and
20% for validation. The training error stabilizes after 30 epochs approximately, as shown
in Figure 4b. The validation error is slightly higher than the training error, indicating that
the ANFIS is capable of generalizing with a lower error. As shown in Figure 4a, LS, CS,
and RS sensors exhibit moderate positive correlations with each other (0.36), indicating
that they typically detect similar features in the environment. The heading angle shows
a very low correlation with the sensors, suggesting minimal direct influence from sensor
readings. The right wheel velocity (RWV) and left wheel velocity (LWV) display a strong
negative correlation (−0.93), reflecting the expected inverse relationship during differential
steering maneuvers. The heading angle also moderately correlates with wheel velocities,
showing a negative correlation with RWV (−0.41) and a positive correlation with LWV
(0.41), indicating the significant role of wheel velocities in determining the robot’s heading.

2.2. Mamdani Fuzzy Inference System

The Mamdani fuzzy inference system (FIS) pictured in Figure 1d,f,g, enables inference
based on the evaluation of one or more membership sets according to a predetermined
number of rules proposed by an expert system designer [17]. Unlike a Sugeno-type fuzzy
inference system, Mamdani allows for multiple inputs and outputs [18]. Consequently, it is
not necessary to separate the calculations for the speeds of the left and right wheels of the
motor. The following sections describe the structure of this fuzzy approach.
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2.2.1. Membership Functions for Inputs and Outputs

The membership function of each input variable (sensors and heading angle) was built
with three triangular fuzzy sets, which are uniformly distributed, as shown in Figure 1f,g.
For the variables related to the distance sensors, the following fuzzy sets are defined with
triangular functions with these parameters: Close: [−0.42, 0, 0.42], Medium: [0.08, 0.5,
0.92], Far: [0.6, 1, 1.42]. The output membership functions are similarly constructed with
triangular fuzzy sets: Slow: [−0.42, 0, 0.42], Normal: [0.08, 0.5, 0.92], Fast: [0.6, 1, 1.42].
These intervals were set based on the desired robot’s speed limitations.

2.2.2. Inference and Defuzzification

To evaluate a Mamdani-type fuzzy set, it is necessary to develop rules, which are also
defined by the designer. The base rules allow handling the avoidance cases displayed in
Figure 2b. Other rules were added based on the possible combinations between input
and output membership functions. For the defuzzification of the FIS output, the centroid
method (COG) is applied, as it provides balanced, smooth, and natural results, which
enhance the performance of the mobile robot control [9].

3. Results and Discussion

The fuzzy strategies for obstacle avoidance were evaluated through simulation using
Coppelia Sim, where we assembled virtual scenarios of different complexity with obstacles
of different shapes. Whitin Copelia the scenarios were configured with the Bullet engine as
a physics computation motor due to its high performance in collision detection and rigid
body dynamics, making it suitable for real-time applications for obstacle avoidance.

The Pioneer 3DX used in the experiments was set with geometry constants based
on the real robot specifications to: b = 0.381 [m], R = 0.195 [m]. The robot’s maximum
velocity was set to vmax = 1.2 [m/s] which leads to considering an average velocity of
vmean = 0.6 [m/s]. The path’s curvature is constrained to LTmin = 0.3 [m] and LTmin = 1.2 [m].
The low-cost sensor model mounted in the virtual robot is the HC-SR04 from which we
use constrained distance measurements from dmin = 0.3 [m] to dmax = 1 [m]. Recall that the
sensing data and wheel speed were normalized from 0 to 1 to generate the training dataset
for the ANFIS.

Avoidance Experiments

The ANFIS and Mamdani fuzzy strategies were assessed in two complex scenarios.
Scenario A was built with scattered obstacles with rounded and squared shapes. In the
center of the scenario, we place an elongated object that will test the avoidance capabilities
due to the curve that the robot should make to reach the goal. The results in scenario A
are pictured in Figure 5, where the ANFIS scheme handles all the obstacles efficiently. As
expected, the robot navigates closely to the large obstacle until it can turn towards the
goal. On the other hand, the Mamdani approach produces an unnecessary loop while
trying to avoid the large obstacle and detecting another obstacle on its path. Note that in
Figures 5 and 6, the ultrasonic beams are shown in red when no obstacle is detected and in
yellow when an obstacle is present.

Scenario B emulates a narrow corridor where the robot should navigate closely to the
walls. This experiment includes a closed curve towards the goal as displayed in Figure 6.
The ANFIS results in this scenario, shown in Figure 6a, show a clean trajectory while the
robot navigates closely to the walls even during the closed curve, where the robot follows
the shape of the wall. In Figure 6b the Mandami approach tries to face the goal all the
time, yielding an oscillatory behavior in the presence of a persistent obstacle. This issue is
related to the constant set of membership functions that were designed to address generic
avoidance cases. The distribution of membership functions in the Mamdani-type system
was not subjected to a tuning process; instead, a uniform distribution was directly applied
across the entire evaluation range of the term set. This approach may require a fine tuning
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since the robot responses aggressively to an obstacle which may produce large deviations
from the goal.
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Evaluating obstacle avoidance schemes in robotics and autonomous systems can be
approached through both qualitative and quantitative methods. Qualitatively, one can
assess the effectiveness of the scheme by observing the robot’s ability to navigate around
obstacles without collisions, maintaining smooth and natural movement patterns. Quanti-
tative evaluation involves measuring specific metrics such as velocity and acceleration. By
analyzing these parameters, one can determine the efficiency and responsiveness of the
avoidance scheme, ensuring that the robot moves at an optimal speed while minimizing
abrupt changes in acceleration, which can indicate inefficient or unsafe maneuvers. In this
sense, the ANFIS produced smooth displacements with controlled accelerations as shown
in Figure 7b-bottom. This yields controlled movements and avoids unnecessary oscillations,
especially while sensing large walls. In both scenarios, the ANFIS shows constant velocities
with minimal acceleration especially when the robot navigates closely to the walls, see
Figure 7b-top. On the other hand, the Mandami approach tends to oscillate while avoiding
an obstacle. In this case, large accelerations are observed in Figure 7a-bottom, which may
cause deviations or loops as the one observed in scenario A.
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As shown in Figure 7, the acceleration frequency is lower in the neuro-fuzzy control
compared to the Mamdani control. This smoothness allows the robot to move more fluidly,
avoiding getting stuck when evading an obstacle. Additionally, a lower acceleration
frequency has the advantage of preventing mechanical wear and fatigue, particularly in
experiments with a real robot.

One of the efficiency parameters used to determine the efficacy between the two
controllers is the performance ratio. This metric is defined as the ratio between the shortest
distance the robot can travel, which is the straight line the robot would take in an obstacle-
free environment, and the distance actually traveled by the robot in each experiment. In
this way, efficiency in identical scenarios can be compared using a dimensionless parameter,
where the perfect distance (completely straight trajectory) would result in a performance
ratio of 1. The lower this value, the poorer the performance of the controller analyzed in a
given scenario.

Table 1 gives a clear overview of the metrics from each experiment. It includes the Root
Mean Square (RMS) values for both speed and acceleration. When using the Mamdani-type
fuzzy controller, there are significant changes in acceleration during orientation shifts.
However, with the neuro-fuzzy controller, these peaks are greatly reduced, suggesting that
this controller aims to keep the speed constant. In Scenario B, the values are quite similar
and stay below one, mainly because the presence of multiple obstacles forces the robot to
move more slowly. However, the time it takes for the robot to reach its target is significantly
reduced when using the neuro-fuzzy control.

Table 1. Performance statistics in the test scenarios.

Statistics
Scenario A Scenario B

ANFIS Mandami ANFIS Mandami

Trajectory time [s] 41.45 29.65 70.45 77.17
Traveled path [m] 14.47 13.21 18.02 20.46

RMS velocity [m/s] 0.24 0.24 0.19 0.20
RMS acceleration [m/s2] 1.09 2.07 0.74 0.68

Performance ratio 0.87 0.85 0.82 0.74
Computational time per cycle [ms] 1.3 0.56 1.3 0.56

4. Conclusions

The results show the effectiveness of using intelligent control systems, specifically the
adaptive neuro-fuzzy inference system (ANFIS) for obstacle avoidance in mobile robots.
Findings highlight several key insights: ANFIS controller exhibited superior performance
in complex obstacle avoidance scenarios compared to the Mamdani fuzzy system. This
is primarily due to ANFIS’s ability to adapt and learn from the environment, resulting in
smoother and more efficient navigation. In scenarios with scattered and complex obstacles,
ANFIS managed to navigate without unnecessary loops or deviations, unlike the Mamdani
system which sometimes struggled with large obstacles. The ability of ANFIS to adjust
its parameters dynamically allowed it to handle unexpected changes and obstacles more
effectively. Overall, the neuro-fuzzy controller demonstrates significant advantages in main-
taining smoother and more efficient control, particularly in more complex scenarios with
obstacles. In Scenario B, where multiple obstacles are present, the neuro-fuzzy controller
not only reduces the trajectory time from 77.17 s (Mamdani) to 70.45 s but also maintains a
favorable balance between speed and acceleration. This improvement in trajectory time
suggests that the neuro-fuzzy controller can navigate obstacles more effectively, achieving
faster goal attainment. Despite the slightly higher RMS acceleration in Scenario B, the
neuro-fuzzy controller still manages to maintain efficient control, as indicated by a higher
performance ratio of 0.82 compared to 0.74 for the Mamdani controller. This ratio highlights
the neuro-fuzzy controller’s ability to find a more optimal path, staying closer to the ideal
straight-line trajectory even in complex environments.
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In narrow corridor scenarios, ANFIS maintained a clean trajectory closely following
the walls, even during sharp turns. In contrast, the Mamdani system exhibited a sinusoidal
trajectory due to aggressive responses to obstacles, indicating the need for fine-tuning
to improve performance in such environments. Quantitative analysis of velocity and
acceleration showed that ANFIS provided controlled movements with minimal unnecessary
oscillations, especially when navigating close to walls. The Mamdani approach, however,
led to larger accelerations and deviations, which can be inefficient and potentially unsafe. A
significant contribution of this work is the development of a comprehensive, model-based
dataset for training the ANFIS controller. This synthetic dataset, generated without real
sensor data, enhances the training process and can be adapted to various robot geometries
and sensor models, providing a versatile tool for future research.
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