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Abstract: Lithium-ion batteries have become a beacon in modern energy storage, powering from
small electronic devices to electric vehicles (EVs) and critical medical equipment. Since their com-
mercial introduction in the 1990s, significant advancements in materials science and engineering
have enhanced battery capacity, safety, and lifespan. However, the complexity of lithium-ion battery
dynamics has necessitated the development of advanced charging and control strategies to optimize
performance, safety, and longevity. This work proposes a comparative analysis of three advanced
control methods for lithium-ion battery charging: reinforcement learning, fuzzy logic, and classic
proportional–integral–derivative (PID) control. Traditional charging methods often fail to address
the complexities of battery dynamics, leading to suboptimal performance. Our study evaluates
these intelligent control strategies using MATLAB-Simulink simulations to enhance charging effi-
ciency, speed, and battery lifespan. The findings indicate that reinforcement learning offers superior
adaptability, fuzzy logic provides robust handling of nonlinearity, and PID control ensures reliable
performance with minimal computational resources.

Keywords: lithium-ion battery; fuzzy logic; reinforcement learning; PID; charger; MATLAB-Simulink

1. Introduction

Lithium-ion batteries are rechargeable and widely recognized for their high energy
density, long cycle life, and low self-discharge rates, which have revolutionized energy stor-
age and usage, becoming a fundamental technology in modern society [1–3]. Conventional
charging methods, such as constant current and constant voltage (CC/CV) techniques, of-
ten fail to address the complexities of lithium-ion battery dynamics, resulting in suboptimal
charging performance and potential battery degradation over time [4]. To address these
challenges, researchers have explored the application of advanced control algorithms and
techniques for lithium-ion battery charging, aiming to improve efficiency, charging speed,
and battery lifespan [5].

In this context, this paper presents a comparative analysis of three prominent intelli-
gent control methods for lithium-ion battery charging: reinforcement learning (RL), fuzzy
logic (FL), and classical proportional–integral–derivative (PID) control.

The RL-based controller was studied due to its ability to learn optimal control strategies
through interactions with the battery model, and the power electronics. This last component
was simplified using the small signal model to enhance the training process. The RL
controller trains a neural network based on a reward function that penalizes current and
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voltage spikes to achieve greater stability in the charging process. This RL agent aims to
control the input voltage to the battery; the neural network adjusts the output to activate
the power electronics, evaluating the obtained response and maximizing the reward value
through multiple interactions. In addition to the voltage response, the system also monitors
the battery state, rewarding or penalizing based on current values and aggressive control
actions. RL algorithms, such as Q-learning or deep Q-networks, can discover charging
policies that minimize charging time, energy consumption, and battery degradation while
ensuring safe operation within the battery’s limitations [6,7].

On the other hand, FL controllers offer a flexible and intuitive way to incorporate
expert knowledge and heuristic rules into the charging process. By defining linguistic
variables such as state of charge, temperature, and charging rate, and establishing a set of
inference rules, two FL controllers are designed: the first one regulates voltage, allowing
it to remain stable despite different charging profiles; the second one regulates current,
avoiding excessive spikes and maintaining a stable value over time. Additionally, fuzzy
logic-based methods handle the nonlinearity and inherent uncertainty in lithium-ion battery
dynamics better, leading to improved charging performance and extended battery life [8].
Finally, PID controllers can be tuned to optimize charging profiles, balancing factors such
as charging time, energy efficiency, and battery health preservation.

This study will compare the three implemented controllers, considering that the choice
of the most suitable intelligent control method for lithium-ion battery charging will de-
pend on factors such as the specific application requirements, available computational
resources, the desired level of complexity, and trade-offs between charging speed, energy
efficiency, and battery lifespan. The three intelligent control methods will be evaluated
using MATLAB-Simulink 2024-B , where the most relevant factors for achieving an efficient
lithium battery charging method will be analyzed. It is important to note that MAT-
LAB provides a detailed battery model for research purposes. The simulation algorithms
will be available to the community at: https://github.com/PrediJos/Intelligent-control-
strategies-for-lithium-battery-chargers (accessed on 26 September 2024). The remaining
sections of this paper are organized as follows: Methodology, Experiments and Results,
and Conclusions.

2. Methodology

Simulating lithium battery chargers in MATLAB-Simulink offers a robust platform
for analyzing and optimizing battery charging systems [9]. Lithium batteries provide
numerous advantages that make them the preferred choice across various applications.
Their high energy density ensures a superior energy-to-weight ratio, making them ideal for
portable electronics and electric vehicles, where space and weight are crucial factors [10].
Moreover, their low self-discharge rate allows them to retain charge over extended periods,
making them suitable for long-term energy storage. Additionally, recent advancements
in recycling technologies and reduced environmental impact contribute to lithium bat-
teries being a more sustainable and eco-friendly energy storage solution. The following
sections will outline control architectures designed to efficiently manage the lithium battery
charging process.

2.1. Averaged Small-Signal Converter Modelling

Lithium-ion batteries require an effective design of the energy transmission system
to avoid damage and guarantee optimal performance in its discharge process. Inefficient
charging methods and components may affect the parameters of the battery, such as life
cycle, capacity and efficiency, state of charge (SOC) and Health Status (SOH) [11,12]. This
article relies on an isolated DC/DC converter power circuit for the energy transference
from a source to the lithium-ion battery. The forward converter features source voltage step-
down characteristics much like a DC/DC buck converter topology. in addition, the forward
converter includes an extra stage between the input and the output with a transformer,
which provides galvanic isolation, which offers greater safety and protection to the battery
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against possible system failures, such as short circuits or overloads [13]. The low signal
model criterion will examine the behavior of the forward converter in the face of small
disturbances near a stable operating point. Considering that the internal impedance of
the battery will be the resistive component, the model design will consider the capacitive,
inductive, and resistive components of the converter. According to Equation (1), the
behavior of this circuit can be characterized as a second-order transfer function [14].

G(s) =
1(

1 + s
ω1

)
·
(

1 + s
ω2

) , (1)

where ω1 and ω2 are the circuit cut-off frequencies. The complete analysis of the circuit can
be simplified by using the low-signal (low-Q) approximation, which considers the quality
factor Q of a low value, this factor measures the ability of the circuit to filter frequencies
close to the resonance frequency ω0 [14], where the interactions between the inductive and
capacitive components of the circuit are less evident. Equation (2) results from applying this
criterion to Equation (1), making the transfer functions more manageable and controllable.

G(s) =
1

1 + 1
Qω0

s + 1
ω2

0
s2

, (2)

The converter model includes its working and transformation ratios yielding,

G(s) = N · Gg0
1

1 + 1
Qω0

s + 1
ω2

0
s2

, Gg0 = D, ω0 =
1√

L · C
, Q = R ·

√
C
L

(3)

where N is the transformer’s transformation ratio, D is the duty cycle, L and C are the
inductive and capacitive components of the output filter of the forward converter, and R is
the battery impedance. Based on these parameters, the transfer function becomes,

Gs =
1

1 + 133x10−6s + 13.3x10−9s2 (4)

The converter simulation uses idealized components, such as power supply, trans-
former, ideal diodes and switches without delays or internal resistance, with the aim of
improving the simulation efficiency [15].

In Figure 1, two scenarios were analyzed: without load and another with a lithium-ion
battery as load. For the no-load case, Figure 1a shows that the voltage and current curves
obtained from the transfer function are smooth, although the converter output presents
oscillations in its final value due to the charge and discharge cycles of the inductor. and
capacitor. Despite this, both the transfer function and the converter present similar voltage
and current trends over time. In the second scenario, with the battery as load, Figure 1c
highlights that the main difference lies in the stabilization time. The idealization of the
transfer function leads to a faster system response compared to the real converter, although
the final output values are consistent.

One of the most notable features of using the transfer function is the simulation time.
Although the converter model provides a more accurate representation of the real world,
simulations when designing the controllers will be time consuming and will often provide
similar results.
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2.2. Control Architectures Description

The control strategies use the lithium battery model in MATLAB-Simulink as a load,
which provides detailed technical parameters for accurate simulation and analysis of battery
performance. These parameters include SOC, open circuit voltage (OCV), internal resis-
tance, capacity, charge/discharge rates, thermal dynamics, voltage limits, self-discharge
rate, and equivalent circuit components. The controllers will handle the supplied voltage
and current during the charging process.

The control architectures are modeled with the same structure for a fair comparison.
The CC/CV charging process begins with a current control phase, where the current is
set at a safe level, usually a fraction of the battery’s nominal capacity, in this control the
battery voltage gradually increases as it accumulates charge, until the battery voltage
reaches a threshold of 3.855 volts per cell, slightly below the maximum value. Then, the
system switches to the voltage control phase, keeping the voltage stable at this level [16,17],
in this voltage control, the current gradually decreases as the battery approaches full
charge. Current reduction occurs because the voltage is held constant, resulting in a drop
in charging current as the battery becomes almost fully charged. This CC/CV approach
prevents overcharging, reduces battery stress, minimizes overheating risks, and extends
battery life [16,17]. The control strategies that were assessed are summarized in Table 1,
and will be detailed in the following sections.

Table 1. Proposed Control Architectures.

Controller. Scenario 1 Scenario 2 Scenario 3

Voltage Reinforcement Learning (RL) Sugeno Fuzzy PD PID
Current PI Sugeno Fuzzy PD + I PID

2.2.1. Reinforcement Learning Architecture

Reinforcement learning (RL) enables the controller to learn optimal control strategies
through interaction with the system [18], adapting to varying conditions and improving
performance over time. This approach allows the controller to handle complex, nonlinear
dynamics that traditional control methods might struggle with. The RL architecture is
summarized in Figure 2b, where the trained agent is executed using the MATLAB’s re-
inforcement learning toolbox. The current control was addressed with a classic PI. This
choice was made due to the high computational load experienced during the training while
using two agents. In addition, the battery model responds slowly to any action yielding an
excessively long training time.
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This should incentivize maintaining the voltage within a desired range while penaliz-
ing deviations from this range. Additionally, it should consider other objectives such as
minimizing energy consumption, reducing oscillations, and ensuring stability. In this sense,
the reward function is computed as,

Rk = r1 · (|ek| ≤ 0.5) + r2 ·
(
|uk−1| = Vre f

)
+ p1 · (|ek| > 0.5) + p2 · (Vk−1 > Vth) (5)

where rx and px denote a reward and a penalization constant, respectively. Note that the
penalizations are negative values that produce a decrease in the total reward. ek is the
voltage error at time k (current error), uk−1 and Vk−1 are the control action and the voltage
observation at time k − 1 (previous samples). Vre f and Vth are voltage constants that denote
the voltage reference and the maximum voltage overshooting threshold. The last constant
is usually considered a 10% above the cell’s voltage level. The proposed reward function
promotes lower errors and actions closer to the voltage setpoint and penalizes large voltage
observations and larger errors.

The agent´s policy learning architecture is composed by an actor–critic scheme as
shown in Figure 3a. The actor network, responsible for selecting actions, can handle con-
tinuous action spaces effectively, which is crucial for tasks requiring fine-grained control,
such as voltage regulation. The critic network, on the other hand, evaluates the actions
by estimating the value function, providing feedback to the actor. This setup allows for
stable and efficient learning by reducing variance in the policy gradient estimates. In this
work, we use a Continuous Gaussian Actor Network (CGAN), which handles continuous
action spaces by outputting the parameters of a Gaussian distribution—mean and standard
deviation. This stochastic approach facilitates exploration, allowing the agent to try various
actions and learn optimal policies. The actor–critic architecture enhances learning stability
by using the critic to evaluate actions and reduce variance in policy updates. This method
is particularly effective for tasks requiring fine-grained control, like voltage regulation in
battery charging, where precise adjustments are crucial. The smooth and differentiable na-
ture of the Gaussian distribution supports efficient gradient-based optimization, improving
learning efficiency and performance in complex control environments.
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The actor–critic agent was setup with several fully connected layers (the universal
function approximators) to handle the complex voltage relationships [19,20]. Most of the
activation functions were setup as Rectified Linear Unit functions (RELU) for a computa-
tionally efficient training process, mitigate the vanishing gradient problem, and promote
sparse activation of the layers, as shown in Figure 3a. The proposed agent was trained
using the MATLAB’s reinforcement learning toolbox. The training results displayed in
Figure 3b showed that after 200 epochs the maximum average reward is achieved. It is
worth noticing that each epoch has a duration of approximately 5 min in a standard PC,
yielding a long training time. The constants in the reward function were set empirically
to ensure a maximum learning. The most critical objective is the error reduction, hence,
p1 and p2 were set to 200, and p1 and p2 were set to −10. Other values may enhance the
learning process; however, the slow response of the battery difficulties the tuning process.

2.2.2. Fuzzy Architecture

The fuzzy Proportional-Derivative (PD) controller can handle nonlinearities and un-
certainties in the system more effectively than traditional PD controllers, providing robust
performance under varying operating conditions. It adapts to changes in battery charac-
teristics, such as state-of-charge and temperature variations, ensuring stable and accurate
voltage control. The fuzzy logic approach allows for smooth and gradual control actions,
reducing the risk of overshooting and oscillations. The fuzzy architecture detailed in
Figure 4a uses a fuzzy-PD to control the voltage and a fuzzy-PD + I that includes an in-
tegral action to control the current. The Fuzzy Inference Systems (FIS) were built with
a Sugeno scheme, which is robust to system variations and uncertainties. It requires a
simplified rule base, reducing design complexity, and ensures smooth output transitions,
minimizing oscillations and overshooting for a more reliable and efficient charging process.
In this work, we trust in normalized triangular membership functions to handle the error
and its derivative, and the output uses three Sugeno normalized functions to handle the
states minimum, zero and maximum as shown in Figure 4b. The inputs range in Figure 4b
were constrained from −100 to 100 to avoid saturations due to the input variable´s vari-
ation. The input range is modified by the constants Kp and Kd, and the output range by
K. In our notation, the subindices v and i denote the relation for the voltage and current
controllers, respectively.
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2.2.3. Classic PID Architecture

Classic proportional–integral–derivative (PID) controllers are widely used in battery
charging applications due to their simplicity, effectiveness, and proven performance. They
are easy to implement and tune, making real-time adjustments to optimize charging
conditions. PID controllers provide stable and accurate control by combining proportional,
integral, and derivative actions, which ensures precise regulation of voltage and current.
Their versatility allows them to be adapted to various battery types and charging scenarios.
Additionally, PID controllers are cost-effective, requiring minimal computational resources,
making them suitable for embedded systems and low-cost hardware implementations.
The PID architecture only uses two classic controllers for voltage and current as shown in
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Figure 2a. The internal structure of a classic PID was assumed to be well known and it was
not detailed due to space limitations.

3. Experiments and Results
3.1. Performace Assessment

In the case of implemented drivers. The reinforcement learning reward function was
determined using heuristic methods, varying each constant of a given condition in small
steps until obtaining the function that provided the best training by trial and error, obtaining
r1, r2, p1, p2, = 200, −25, −10, 180. For the fuzzy controller (PD + I), manual tuning
was carried out by trial and error, starting with the adjustment of the parameter P until
an adequate response was achieved, followed by the adjustment of the constants D and
I, and finally the control signal K in that order, achieving for current control P, D, I, KD
are 20; 0.000001; 2; 0.297, and for voltage control P, D, KD are 15; 0.0001; 0.315. The PID
controller was tuned using the MATLAB PID Tuner tool, which uses neural networks to
find the optimal parameters, obtaining that for Current control P, IPID = 15; 5, and for
voltage control Current P, I, DPID = 22.5; 4.9; 0.03 [21].

In the analysis of the controllers, several aspects are evaluated such as precision in
voltage and current regulation, response time, stability and resistance to disturbances. For
the controller based on neural networks trained with reinforcement learning, the system
reached a stable nominal voltage without overshoots when the current was zero, see
Figure 5b. However, when applying CC/CV control, the agent’s lack of knowledge of
the existing current caused fluctuations in the voltage, allowing the current to variably
decrease while the battery continued to charge. The fuzzy controller, designed to maintain a
stable charge, showed longer charge and stabilization times, but no spikes in the transition
between current and voltage control, as shown in Figure 5c. The PID controller, although it
responded quickly to errors, presented greater disturbances, and during the transition from
voltage to current, an excess current was observed in Figure 5b, that could be dangerous
for the battery. In terms of loading speed, the reinforcement learning controller was the
fastest, although for practical use, it would need to consider the circulating current to
improve its performance. Also, a chattering phenomenon occurred, which could damage
the electronic components and reduce battery life, indicating the need to improve the RL
and fuzzy architectures. The fuzzy controller, although safer, was slower and could be
optimized by adjusting the inference rules. The PID showed intermediate performance,
without depending on the operator’s experience.
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3.2. Performace Metrics

To measure the performance of the different controllers, an analysis of the voltage con-
trol action entering the DC/DC converter was carried out, resulting in Table 2. For the RMS
value, it is intended to verify the variation in the voltage control action, showing that the
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RL controller has a slightly higher value, indicating greater variations in its control action.
This suggests that it has a very fine-tuned response, reacting to even the smallest changes.

Table 2. Performance metrics in control action.

Controller RMS Voltage [V] RMS Current [A] Charging Time Simulation Time
6 s

Step Simulation
Time

RL 3.9347 0.3 10,017.57 s 21,046.5 s 3.5 ms
Fuzzy PI + D 3.8601 0.3 18,401.40 s 1961.4 s 0.33 ms

PID 3.8601 0.3 12,933.57 s 87.90 s 0.015 ms

In addition to the analysis of the voltage delivered as a control action to the converter,
the battery current has been evaluated with an RMS value for all controllers. In which
a constant value of 0.3 A was obtained. This result suggests that, despite differences in
control strategies and variations in control action, all controllers manage to maintain the
output current within a desired range. This is indicative that although the RL controller
shows greater variability in voltage control action, it does not compromise stability and
consistency in terms of output current, which is crucial for the safe and efficient operation
of the system.

4. Discussion

The results in Table 2 were obtained in the simulation of each controller which is
configured for 6 s and for the three controllers, the one that took the longest to execute was
the RL, which took 21,046 s, additionally, when compared with the other controllers applied
to the DC/DC converter to regulate the voltage and current of a lithium-ion battery, it will
be observed that the RL controller presented greater variations in its output, even when
faced with small disturbances, causing the chattering phenomenon, which refers to high
frequency oscillations in the control actions, which when applied as an activation signal
in real power electronics can cause: overheating of the battery and converter components,
noise in the sensor and a reduction in battery life. This variation in the RL controller is 0.02 V.
To improve the controller and mitigate vibrations, options include adding low-pass filters at
the controller output, modifying the neural network architecture, or using a hybrid control
approach where a PID or fuzzy controller regulates the output of the neural network.

The RL controller has a high adaptability to different situations, due to the fact that
it reacts to disturbances with greater sensitivity, but these variations suggest the need to
include more parameters in the agent training to improve its ability to adapt to a greater
number of scenarios, increase charging efficiency, and avoid possible instabilities. On the
other hand, fuzzy controllers due to the inference rules placed seek to avoid high current
peaks, so it performs a slower charge, while the PID reacts to the error by modifying the
output signal and can adapt to dynamic changes.

Regarding the performance of the three controllers, their output was evaluated using
the root mean square (RMS) value. The results show that all controllers maintain an
average voltage similar to the nominal voltage of the battery, which is crucial to prevent
overcharging and avoid overheating of the battery. Regarding current control, all controllers
manage to reach the reference without presenting overshoots, in very short response times,
also demonstrating good tolerance to external disturbances. Regarding voltage control,
it was observed that the controllers manage to reach the reference consistently, which
causes the current to begin to gradually decrease until it reaches zero, thus completing
the charging cycle. However, it is important to note that, in the case of the reinforcement
learning (RL)-based controller, a slight oscillation in the current was observed, which
fluctuates between the current value and zero, which could require additional adjustments
to improve its stability in the final phase of the charge.

5. Conclusions

Using PID, fuzzy, and agent-based controllers trained with reinforcement learning
to regulate the charge of a battery offers different advantages and challenges. PID con-
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trollers are known for their simplicity and effectiveness in regulating voltage and current,
providing a fast and stable response in many applications. Fuzzy controllers transfer
certain experience to programmers by making the system adaptable to certain situations,
depending on the number of inference rules and controllers applied. On the other hand,
controllers based on neural networks with reinforcement learning can dynamically adapt
to changing conditions and optimize their performance over time. Although the latter
can offer significant improvements in terms of precision and efficiency, they also require
a greater computational load and can result in longer simulation times; and for greater
precision, they will require more complex neural network architectures that will increase
simulation times. When charging lithium-ion batteries, each type of controller offers spe-
cific advantages and disadvantages. The controller based on reinforcement learning stands
out for its high adaptability and ability to adjust to various loading conditions, thanks
to its ability to handle small disturbances and optimize the loading process dynamically.
However, it requires more extensive training and the inclusion of additional parameters to
maximize its efficiency and avoid instabilities. On the other hand, fuzzy and PID controllers
offer greater stability and lower variability, which can be beneficial in applications where
more predictable and reliable performance is required. Although these controllers show
less ability to adapt to changing conditions, their stability and simplicity may be suitable
for less dynamic systems or where predictability is crucial.
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