
Citation: Ignéczi, G.; Horváth, E.

Review of Vehicle Motion Planning

and Control Techniques to Reproduce

Human-like Curve-Driving Behavior.

Eng. Proc. 2024, 79, 20. https://

doi.org/10.3390/engproc2024079020

Academic Editors: András Lajos Nagy,

Boglárka Eisinger Balassa, László

Lendvai and Szabolcs Kocsis-Szürke

Published: 4 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Review of Vehicle Motion Planning and Control Techniques to
Reproduce Human-like Curve-Driving Behavior †

Gergő Ignéczi * and Ernő Horváth

Vehicle Industry Research Center, Széchenyi István University, 9026 Győr, Hungary; herno@ga.sze.hu
* Correspondence: gergo.igneczi@ga.sze.hu
† Presented at the Sustainable Mobility and Transportation Symposium 2024, Győr, Hungary, 14–16 October 2024.

Abstract: Among the many technological challenges of automated driving development, there is
an increasing focus on the behavior of these systems. Behavior is usually associated with multiple
layers of control. In this paper, we focus on motion planning and control, and how these layers can be
tailored to produce different behavior. Our review aims to collect and judge the most used techniques
in the field of path planning and control. It has been revealed that model predictive planning and
control provides high flexibility, with the cost of high computational capacity. There are simpler
algorithms, such as pure-pursuit and Stanley controllers, however, these have very few parameters,
therefore, the number of possible behavior patterns is limited.

Keywords: planning; control; naturalistic driving; lane keeping

1. Introduction

In the field of Advanced Driver Assistance Systems (ADAS), one of the most widely
used functions is the Lane Keep or Lane Centering System (LKS or LCS) [1]. This function
monitors the drivable corridor and keeps the vehicle in the center of the lane. To do that,
the path-planning module calculates a reference line, which is then handed over to the
vehicle controller. Even though there are many path-planning algorithms in the field [2–9],
in a lot of cases, the reference line is associated with the centerline of the lane. Then, the
controller—based on its internal policy—calculates a target steering angle, which is then
applied to the actuator controls. In the end, the vehicle’s lateral motion is influenced by
actuating the steering wheel. The composition of path planning and control is a commonly
accepted technique of building automated driving systems [10]. Different behavior patterns
can be recognized by tuning the control algorithm’s free parameters. In the literature, there
are control algorithms that can be classified into one of the following three types:

• Inverse-dynamic models;
• Compensatory models;
• Feedforward models.

Inverse-dynamic models use a vehicle model to calculate the target steering angle to
reach a certain target state (i.e., vehicle position). Such controllers are the pure-pursuit
algorithm [11] or the Stanley controller [12]. Compensatory models assume that drivers
intervene in relation to the error of a certain output quantity, such as the vehicle position
or orientation. Hence, these control models often act as closed-loop controllers, and the
drivers are modeled using simple PID or other linear control structures [13–16]. Feedfor-
ward models also use a vehicle model to predict its behavior on a certain input trajectory.
Then, based on a pre-defined objective function, they optimize the behavior and calculate
the optimum input trajectory on a so-called preview horizon. Such controllers are the
model predictive controls [17–20]. In this paper, we implement algorithms of each type in
MATLAB and run a closed-loop simulation on a real-world road segment. We compare

Eng. Proc. 2024, 79, 20. https://doi.org/10.3390/engproc2024079020 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2024079020
https://doi.org/10.3390/engproc2024079020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-5083-2073
https://doi.org/10.3390/engproc2024079020
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2024079020?type=check_update&version=1

Eng. Proc. 2024, 79, 20 2 of 7

each algorithm by its ability to provide accuracy and flexible paths and its computation
effort.

2. Materials and Methods
2.1. Methods

The model is a kinematic single-track model. The model equations are given in
Equation (1), where Ts is the sampling time, L is the axis distance of the vehicle, xk = [x y Θ]T

is the state vector, and uk = αk is the input of the system. The used coordinate frame (x, y),
the local frame (ξ, η), and the related kinematic quantities are shown in Figure 1a. Finally,
the output vector is yk = [yk Θk]

T .

f =

 xk

yk

Θk

 = xk =


xk−1 + Tsvξcos(Θk−1)

yk−1 + Tsvξsin(Θk−1)

Θk−1 +
Tsvξ tan(α f)

L

 (1)

Eng. Proc. 2024, 79, 20 2 of 7

model predictive controls [17–20]. In this paper, we implement algorithms of each type in
MATLAB and run a closed-loop simulation on a real-world road segment. We compare
each algorithm by its ability to provide accuracy and flexible paths and its computation
effort.

2. Materials and Methods
2.1. Methods

The model is a kinematic single-track model. The model equations are given in Equa-
tion (1), where 𝑇௦ is the sampling time, 𝐿 is the axis distance of the vehicle, 𝒙௞ = ሾ𝑥 𝑦 Θሿ்
is the state vector, and 𝑢௞ = 𝛼௞ is the input of the system. The used coordinate frame (𝑥, 𝑦), the local frame (𝜉, 𝜂), and the related kinematic quantities are shown in Figure 1a.
Finally, the output vector is 𝒚௞ = ሾ𝑦௞ Θ௞ሿ்.

𝑓 = ൥𝑥௞𝑦௞Θ௞൩ = 𝑥௞ = ⎣⎢⎢⎢
⎡𝑥௞ିଵ + 𝑇௦𝑣క cos(𝛩௞ିଵ)𝑦௞ିଵ + 𝑇௦𝑣క sin(𝛩௞ିଵ)Θ௞ିଵ + 𝑇௦𝑣క tan൫𝛼௙൯𝐿 ⎦⎥⎥⎥

⎤
 (1)

(a) (b)

Figure 1. (a) Vehicle quantities and relation to the road centerline; (b) Coordinate system and related
quantities of the single-track model.

The kinematic single-track model is implemented in MATLAB. The simulations are
run using a real-life road section from Hungary, Road 31. The path is shown in Figure 2.
The model given in Equation (1) is implemented in MATLAB, too.

Figure 2. Road segment from Road 31, Hungary, used for simulations.

2.2. Model Predictive Control
The MPC algorithms rely on the following basic steps:

• Pr ediction of the vehicle states 𝑋௞ = ሾ𝑥௞ 𝑥௞ାଵ … 𝑥௞ାே೛ିଵሿ ∈ ℝ௡ൈே೛ , 𝑋௞ =𝑓(𝑋௞ିଵ, 𝑈,∙), given the input vector 𝑈 = ሾ𝑢௞ 𝑢௞ାଵ … 𝑢௞ାே೛ିଵሿ ∈ ℝ௠ൈே೛ on the predic-
tion horizon 𝑁௣ , and the output 𝑌 = ሾ𝑦௞ 𝑦௞ାଵ … 𝑦௞ାே೛ିଵሿ ∈ ℝ௢ൈே೛ , where 𝑜 is the
number of outputs;

Figure 1. (a) Vehicle quantities and relation to the road centerline; (b) Coordinate system and related
quantities of the single-track model.

The kinematic single-track model is implemented in MATLAB. The simulations are
run using a real-life road section from Hungary, Road 31. The path is shown in Figure 2.
The model given in Equation (1) is implemented in MATLAB, too.

Eng. Proc. 2024, 79, 20 2 of 7

model predictive controls [17–20]. In this paper, we implement algorithms of each type in
MATLAB and run a closed-loop simulation on a real-world road segment. We compare
each algorithm by its ability to provide accuracy and flexible paths and its computation
effort.

2. Materials and Methods
2.1. Methods

The model is a kinematic single-track model. The model equations are given in Equa-
tion (1), where 𝑇௦ is the sampling time, 𝐿 is the axis distance of the vehicle, 𝒙௞ = ሾ𝑥 𝑦 Θሿ்
is the state vector, and 𝑢௞ = 𝛼௞ is the input of the system. The used coordinate frame (𝑥, 𝑦), the local frame (𝜉, 𝜂), and the related kinematic quantities are shown in Figure 1a.
Finally, the output vector is 𝒚௞ = ሾ𝑦௞ Θ௞ሿ்.

𝑓 = ൥𝑥௞𝑦௞Θ௞൩ = 𝑥௞ = ⎣⎢⎢⎢
⎡𝑥௞ିଵ + 𝑇௦𝑣క cos(𝛩௞ିଵ)𝑦௞ିଵ + 𝑇௦𝑣క sin(𝛩௞ିଵ)Θ௞ିଵ + 𝑇௦𝑣క tan൫𝛼௙൯𝐿 ⎦⎥⎥⎥

⎤
 (1)

(a) (b)

Figure 1. (a) Vehicle quantities and relation to the road centerline; (b) Coordinate system and related
quantities of the single-track model.

The kinematic single-track model is implemented in MATLAB. The simulations are
run using a real-life road section from Hungary, Road 31. The path is shown in Figure 2.
The model given in Equation (1) is implemented in MATLAB, too.

Figure 2. Road segment from Road 31, Hungary, used for simulations.

2.2. Model Predictive Control
The MPC algorithms rely on the following basic steps:

• Pr ediction of the vehicle states 𝑋௞ = ሾ𝑥௞ 𝑥௞ାଵ … 𝑥௞ାே೛ିଵሿ ∈ ℝ௡ൈே೛ , 𝑋௞ =𝑓(𝑋௞ିଵ, 𝑈,∙), given the input vector 𝑈 = ሾ𝑢௞ 𝑢௞ାଵ … 𝑢௞ାே೛ିଵሿ ∈ ℝ௠ൈே೛ on the predic-
tion horizon 𝑁௣ , and the output 𝑌 = ሾ𝑦௞ 𝑦௞ାଵ … 𝑦௞ାே೛ିଵሿ ∈ ℝ௢ൈே೛ , where 𝑜 is the
number of outputs;

Figure 2. Road segment from Road 31, Hungary, used for simulations.

2.2. Model Predictive Control

The MPC algorithms rely on the following basic steps:

• Prediction of the vehicle states Xk =
[

xkxk+1 . . . xk+Np−1

]
∈ Rn×Np , Xk = f (Xk−1, U,),

given the input vector U =
[
ukuk+1 . . . uk+Np−1

]
∈ Rm×Np on the prediction horizon

Np, and the output Y =
[
ykyk+1 . . . yk+Np−1

]
∈ Ro×Np , where o is the number of

outputs;
• Calculating the reference output, given the prior path Yre f = g

(
γ(pdriver), vξ , Np, Th

)
,

where Th is the prediction horizon and γ is the representation of the prior path;

Eng. Proc. 2024, 79, 20 3 of 7

• Calculating the cost h
(

Y, Yre f , Ytra f f ic, wdriver, cdriver

)
.

The optimization variables are elements of U, and the cost function h(·) is minimized
as follows:

min
U

h(·)
s.t.umin ≤ U ≤ umax

As model Equation (1) is non-linear, a numerical non-linear optimization algorithm
is used. This is carried out in MATLAB, using the ‘fmincon’ function of the optimization
toolbox. The initial value of the input vector U is zero, then, the previously calculated
optimal input is taken as the initial point of the next optimization loop. The MPC cost
function always includes a term that is associated with the error of the output(s) to the
reference. Thus, the reference output vector yre f is calculated from the prior path and
interpolated to the predicted vehicle positions in Equation (2), as follows:

Yre f = interp
(

γ, xpred

)
, (2)

where xpred = x0 +
[
dx1dx2 . . . dxk . . . dxNp

]
, dxk = vξcos(Θk), and x0 is the vehicle position

at the time of planning. The geometric relations are shown in Figure 3a. The cost function
also includes a term that is controversial with the output error, namely the amplitude of
the steering angle. Then, the final cost function is given by Equation (3), as follows:

h(·) =
Np

∑
i=1

(
yre f ,i − yi

)T
Wy

(
yre f ,i − yi

)
+ u2

i wα, (3)

where Wy = diag
([

wdy wdΘ

])
is the weight matrix, wα is the input weight, and

yre f ,i = Y[:, i], i.e., the ith column of the output matrix.

Eng. Proc. 2024, 79, 20 3 of 7

• Calculating the reference output, given the prior path 𝑌௥௘௙ = 𝑔(𝛾(𝑝ௗ௥௜௩௘௥), 𝑣క, 𝑁௣, 𝑇௛),
where 𝑇௛ is the prediction horizon and 𝛾 is the representation of the prior path;

• Calculating the cost ℎ(𝑌, 𝑌௥௘௙, 𝑌௧௥௔௙௙௜௖, 𝑤ௗ௥௜௩௘௥, 𝑐ௗ௥௜௩௘௥).
The optimization variables are elements of 𝑈 , and the cost function ℎ(∙) is mini-

mized as follows: min௎ ℎ(∙) 𝑠. 𝑡. 𝑢௠௜௡ ൑ 𝑈 ൑ 𝑢௠௔௫

As model Equation (1) is non-linear, a numerical non-linear optimization algorithm
is used. This is carried out in MATLAB, using the ‘fmincon’ function of the optimization
toolbox. The initial value of the input vector 𝑈 is zero, then, the previously calculated
optimal input is taken as the initial point of the next optimization loop. The MPC cost
function always includes a term that is associated with the error of the output(s) to the
reference. Thus, the reference output vector 𝑦௥௘௙ is calculated from the prior path and
interpolated to the predicted vehicle positions in Equation (2), as follows: 𝑌௥௘௙ = 𝑖𝑛𝑡𝑒𝑟𝑝(𝛾, 𝑥௣௥௘ௗ), (2)

where 𝑥௣௥௘ௗ = 𝑥଴ + ሾ𝑑𝑥ଵ 𝑑𝑥ଶ … 𝑑𝑥௞ … 𝑑𝑥ே೛ሿ, 𝑑𝑥௞ = 𝑣కcos (Θ௞), and 𝑥଴ is the vehicle posi-
tion at the time of planning. The geometric relations are shown in Figure 3a. The cost
function also includes a term that is controversial with the output error, namely the am-
plitude of the steering angle. Then, the final cost function is given by Equation (3), as fol-
lows:

ℎ(∙) = ෍൫𝑦௥௘௙,௜ െ 𝑦௜൯்𝑊௬൫𝑦௥௘௙,௜ െ 𝑦௜൯ே೛
௜ୀଵ + 𝑢௜ଶ𝑤ఈ, (3)

where 𝑊௬ = 𝑑𝑖𝑎𝑔൫ൣ𝑤ௗ௬ 𝑤ௗ௵൧൯ is the weight matrix, 𝑤ఈ is the input weight, and 𝑦௥௘௙,௜ =𝑌ሾ: , 𝑖ሿ, i.e., the 𝑖௧௛ column of the output matrix.

(a) (b) (c) (d)

Figure 3. Schematic representation of each control algorithm. (a) NMPC, where the vehicle motion
is predicted on a selected horizon and the right steering angle trajectory is obtained via optimization;
(b) Pure-pursuit, where the steering angle target value is directly calculated from a look-ahead
point; (c) Stanley controller, which considers both position and angle error of the front axle; (d) PID
controller, which follows the generic closed-loop control idea.

2.3. Pure-Pursuit Controller
The pure-pursuit controller relies on a simple concept. A look-ahead point is calcu-

lated, and then a circular path is defined, which leads the vehicle from its location to this
look-ahead point. Geometrical relations are shown in Figure 3b. The curvature of the tar-
get path is calculated according to Equation (4), as follows: 𝜅௧௔௥ = 𝑙଴ଶ2𝜂଴ (4)

Figure 3. Schematic representation of each control algorithm. (a) NMPC, where the vehicle motion is
predicted on a selected horizon and the right steering angle trajectory is obtained via optimization;
(b) Pure-pursuit, where the steering angle target value is directly calculated from a look-ahead
point; (c) Stanley controller, which considers both position and angle error of the front axle; (d) PID
controller, which follows the generic closed-loop control idea.

2.3. Pure-Pursuit Controller

The pure-pursuit controller relies on a simple concept. A look-ahead point is calculated,
and then a circular path is defined, which leads the vehicle from its location to this look-
ahead point. Geometrical relations are shown in Figure 3b. The curvature of the target path
is calculated according to Equation (4), as follows:

κtar =
l2
0

2η0
(4)

Then, the target steering angle can be calculated according to Equation (4). The
algorithm has one parameter l0, which also defines p0(ξ0, η0). Often—to overcome speed

Eng. Proc. 2024, 79, 20 4 of 7

dependency issues—the look-ahead distance l0 is replaced by look-ahead time, and then
l0 = vξ t0.

2.4. Stanley Controller

The Stanley controller is a simple but robust way of leading vehicles. There are two
main differences compared to the pure-pursuit algorithm, as follows: the deviation from
the reference path (often called cross-track error) is calculated for the front axis of the
vehicle. Secondly, the orientation error to the tangent of the reference line at the vehicle
position is also considered. Its illustration is shown in Figure 3c. Then, the target steering
angle can be calculated according to Equation (5). It has one parameter, which is the Stanley
coefficient k.

αtar = atan
(

ke
vξ

)
+ θ0 (5)

2.5. Compensatory Driver Model

The compensatory driver model in this implementation is a parallel PID controller,
which considers the deviation from the reference path and its integral and derivative
terms [13]. Its geometrical relations are shown in Figure 3d. The error quantities are
calculated at the vehicle position. The target steering angle is given by Equation (6). The
algorithm has 3 parameters, and the control coefficients are associated with the differ-
ent terms.

αtar = Pe + I
∫

edt + D
de
dt

(6)

3. Results
3.1. Evaluation Criteria

In Section 3.2, the experiments are presented to show the behavior of each algorithm.
The following quantities are examined:

• δ(t)—lane offset to the centerline;
• α f —front road wheel angle, which is the input of the system;
• tct—computational time/simulation cycle, measured in MATLAB.

The results are generated using the simulation framework detailed in Section 2.1.

3.2. Experiments

The following tests are run to show the working principle of the proposed planning
and control algorithm:

• Test I: Neutral behavior, which is the compromise between the steering wheel oscilla-
tion and the tracking accuracy;

• Test II: Mistune—to produce a behavior that deviates from the neutral behavior.

The parameters of each test case are given in Table 1.

Table 1. Parameters and description of the test cases.

MPC Pure-Pursuit Stanley PID

Test I. wdy = 0.0, wdΘ = 2.0, wα = 1.0 t0 = 1.5 s k = 1 P = 0.1, I = 0.01, D = 0.05

Test II. wdy = 0.0, wdΘ = 2.0, wα = 1.5 t0 = 2.25 s k = 0.5 P = 0.01, I = 0.01, D = 0.05

The results of Test I are shown in Figure 4. The MPC algorithm has the highest
computational capacity needs, while providing moderate error on the position output.
The steering angle has low frequency oscillation. The pure-pursuit algorithm provides a
moderate error on the position output but a very smooth steering angle. Its computational
time need is the lowest. The Stanley controller provides the best track error; however, the
steering angle has high frequency oscillation. The simple PID controller produces a very

Eng. Proc. 2024, 79, 20 5 of 7

similar output as the Stanley controller, with both having higher computational time needs
than pure-pursuit. Interestingly, all of the controllers result in overshoot in the curves,
except pure-pursuit, which cuts the curve slightly.

A second test was run, where each controller was tuned differently. The aim was to
show how the parameters influence the output behavior. The results are shown in Figure 5.
Having a higher weight associated with the input signal, the output error from the NMPC
algorithm increases. Having a higher look-ahead time, the pure-pursuit algorithm cuts
the curves more significantly, which is also a usual behavior of drivers. It must be noted
that this algorithm is not suitable to use for outer-lane driving in curves. Having a lower
Stanley coefficient results in higher deviation from the reference path and causes increased
computational time at certain parts of the simulation. However, the steering angle does
not change significantly. Having lower proportional gain, the PID controller results in a
much higher overshoot in curves, while not significantly changing the input steering angle.
Interestingly, similarly to the Stanley controller, the computational time increases in this
case as well.

Eng. Proc. 2024, 79, 20 5 of 7

Table 1. Parameters and description of the test cases.

 MPC Pure-Pursuit Stanley PID
Test I. 𝑤ௗ௬ = 0.0, 𝑤ௗ௵ = 2.0, 𝑤ఈ = 1.0 𝑡଴ = 1.5 s 𝑘 = 1 𝑃 = 0.1, 𝐼 = 0.01, 𝐷 = 0.05
Test II. 𝑤ௗ௬ = 0.0, 𝑤ௗ௵ = 2.0, 𝑤ఈ = 1.5 𝑡଴ = 2.25 s 𝑘 = 0.5 𝑃 = 0.01, 𝐼 = 0.01, 𝐷 = 0.05

The results of Test I are shown in Figure 4. The MPC algorithm has the highest com-
putational capacity needs, while providing moderate error on the position output. The
steering angle has low frequency oscillation. The pure-pursuit algorithm provides a mod-
erate error on the position output but a very smooth steering angle. Its computational time
need is the lowest. The Stanley controller provides the best track error; however, the steer-
ing angle has high frequency oscillation. The simple PID controller produces a very simi-
lar output as the Stanley controller, with both having higher computational time needs
than pure-pursuit. Interestingly, all of the controllers result in overshoot in the curves,
except pure-pursuit, which cuts the curve slightly.

(a) (b) (c) (d)

Figure 4. Results of experimental Test I. (a) NMPC, where the computational time is the highest, but
the control error is low; (b) Pure-pursuit, resulting in smooth steering trajectory, but increased po-
sition error; (c) Stanley, having both low error and low computational time; (d) PID control.

A second test was run, where each controller was tuned differently. The aim was to
show how the parameters influence the output behavior. The results are shown in Figure
5. Having a higher weight associated with the input signal, the output error from the
NMPC algorithm increases. Having a higher look-ahead time, the pure-pursuit algorithm
cuts the curves more significantly, which is also a usual behavior of drivers. It must be
noted that this algorithm is not suitable to use for outer-lane driving in curves. Having a
lower Stanley coefficient results in higher deviation from the reference path and causes
increased computational time at certain parts of the simulation. However, the steering
angle does not change significantly. Having lower proportional gain, the PID controller
results in a much higher overshoot in curves, while not significantly changing the input
steering angle. Interestingly, similarly to the Stanley controller, the computational time
increases in this case as well.

Figure 4. Results of experimental Test I. (a) NMPC, where the computational time is the highest,
but the control error is low; (b) Pure-pursuit, resulting in smooth steering trajectory, but increased
position error; (c) Stanley, having both low error and low computational time; (d) PID control.

Eng. Proc. 2024, 79, 20 6 of 7

(a) (b) (c) (d)

Figure 5. Results of experimental Test II. (a) NMPC, with increased output error; (b) Pure-pursuit,
where increased look-ahead time results in more significant curve cutting; (c) Stanley, where less
strict control results in higher error but lower computational time; (d) PID control, where decreased
proportional gain results in higher error.

4. Conclusions
4.1. Contribution

In this paper, we have implemented prototypically and compared the most relevant
control algorithms. It has been shown that, considering a simple kinematic bicycle model,
the MPC algorithm produces the worst output. However, it is also emphasized that the
advantages of MPC come when the complexity of the system under control grows. Also,
other terms can be added to the objective function (e.g., traffic, distance to lane edges, etc.),
which increases the flexibility of this algorithm. Pure-pursuit provides the smoothest
steering angle signal, however, its flexibility to provide different motion behavior is low.
It can only produce curve cuts. Stanley and PID controllers are highly similar, however,
while the Stanley controller is relatively ineffective on the parameter changes, the PID
controller performance degraded a lot when changing the gains.

4.2. Limitations
The implementation took place in MATLAB, considering only a kinematic single-

track model. This makes the value of the work lower, as the results cannot be directly
taken over to practical implementation, e.g., in real-vehicle controllers. Also, the tuning
was carried out empirically, which makes the comparison less reliable. However, the char-
acteristics of the controllers could be nicely shown.

4.3. Outlook
In the future, we plan to continue the analysis with real-vehicle application, as well

as further extension of the MPC algorithm, to show the real features of these controllers
in terms of human-like driving of automated systems.

Author Contributions: Conceptualization, G.I. and E.H.; methodology, G.I.; implementation, G.I.;
validation, G.I.; conclusions, G.I. and E.H.; supervision, E.H. All authors have read and agreed to
the published version of the manuscript.

Funding: The publication was created in the framework of the Széchenyi István University’s
VHFO/416/2023-EM_SZERZ project entitled “Preparation of digital and self-driving environmental
infrastructure developments and related research to reduce carbon emissions and environmental
impact/Green Traffic Cloud”.

Figure 5. Results of experimental Test II. (a) NMPC, with increased output error; (b) Pure-pursuit,
where increased look-ahead time results in more significant curve cutting; (c) Stanley, where less
strict control results in higher error but lower computational time; (d) PID control, where decreased
proportional gain results in higher error.

Eng. Proc. 2024, 79, 20 6 of 7

4. Conclusions
4.1. Contribution

In this paper, we have implemented prototypically and compared the most relevant
control algorithms. It has been shown that, considering a simple kinematic bicycle model,
the MPC algorithm produces the worst output. However, it is also emphasized that the
advantages of MPC come when the complexity of the system under control grows. Also,
other terms can be added to the objective function (e.g., traffic, distance to lane edges,
etc.), which increases the flexibility of this algorithm. Pure-pursuit provides the smoothest
steering angle signal, however, its flexibility to provide different motion behavior is low. It
can only produce curve cuts. Stanley and PID controllers are highly similar, however, while
the Stanley controller is relatively ineffective on the parameter changes, the PID controller
performance degraded a lot when changing the gains.

4.2. Limitations

The implementation took place in MATLAB, considering only a kinematic single-track
model. This makes the value of the work lower, as the results cannot be directly taken over
to practical implementation, e.g., in real-vehicle controllers. Also, the tuning was carried
out empirically, which makes the comparison less reliable. However, the characteristics of
the controllers could be nicely shown.

4.3. Outlook

In the future, we plan to continue the analysis with real-vehicle application, as well as
further extension of the MPC algorithm, to show the real features of these controllers in
terms of human-like driving of automated systems.

Author Contributions: Conceptualization, G.I. and E.H.; methodology, G.I.; implementation, G.I.;
validation, G.I.; conclusions, G.I. and E.H.; supervision, E.H. All authors have read and agreed to the
published version of the manuscript.

Funding: The publication was created in the framework of the Széchenyi István University’s
VHFO/416/2023-EM_SZERZ project entitled “Preparation of digital and self-driving environmental
infrastructure developments and related research to reduce carbon emissions and environmental
impact/Green Traffic Cloud”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The scripts developed during the work of this paper, as well as the
input data used to generate the experimental results, are publicly available in the author’s github
repository via this link: https://github.com/gfigneczi1/hlb/tree/main/Solutions/CruiseConcept/
modelPredictiveControl.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. United Nations. Economic and Social Council: Proposal for a new UN Regulation on uniform provisions concerning the approval

of vehicles with regards to Automated Lane Keeping System. In Proceedings of the ECE/TRANS/WP.29/2020/81, Geneva,
Switzerland, 23–25 June 2020.

2. Werling, M.; Ziegler, J.; Kammel, S.; Thrun, S. Optimal trajectory generation for dynamic street scenarios in a Frenét frame.
In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010;
pp. 987–993.

3. Osa, T. Multimodal trajectory optimization for motion planning. Int. J. Robot. Res. 2020, 39, 983–1001. [CrossRef]
4. Li, A.; Jiang, H.; Li, Z.; Zhou, J.; Zhou, X. Human-like trajectory planning on curved road: Learning from human drivers. IEEE

Trans. Intell. Transp. Syst. 2020, 21, 3388–3397. [CrossRef]
5. Yu, C.; Ni, A.; Luo, J.; Wang, J.; Zhang, C.; Chen, Q.; Tu, Y. A novel dynamic lane-changing trajectory planning model for

automated vehicles based on reinforcement learning. J. Adv. Transp. 2022, 2022, 8351543. [CrossRef]
6. Zhang, J.; Chen, H.; Song, S.; Hu, F. Reinforcement learning-based motion planning for automatic parking system. IEEE Access

2020, 8, 154485–154486. [CrossRef]

https://github.com/gfigneczi1/hlb/tree/main/Solutions/CruiseConcept/modelPredictiveControl
https://github.com/gfigneczi1/hlb/tree/main/Solutions/CruiseConcept/modelPredictiveControl
https://doi.org/10.1177/0278364920918296
https://doi.org/10.1109/TITS.2019.2926647
https://doi.org/10.1155/2022/8351543
https://doi.org/10.1109/ACCESS.2020.3017770

Eng. Proc. 2024, 79, 20 7 of 7

7. Chen, L.; Jiang, Z.; Cheng, L.; Knoll, A.C.; Zhou, M. Deep reinforcement learning based trajectory planning under uncertain
constraints. Front. Neurorobot. 2022, 16, 883562. [CrossRef] [PubMed]

8. Yu, S.; Shen, C.; Ersal, T. Nonlinear Model Predictive Planning and Control for High-Speed Autonomous Vehicles on 3D Terrains.
IFAC-PapersOnLine 2021, 54, 412–417. [CrossRef]

9. Eilbrecht, J.; Bieshaar, M.; Zernetsch, S.; Doll, K.; Sick, B.; Stursberg, O. Model-Predictive Planning for Autonomous Vehicles
Anticipating Intentions of Vulnerable Road Users by Artificial Neural Networks. In Proceedings of the IEEE Symposium Series
on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017.

10. Peters, B.; Nilsson, L. Modelling the driver in control. In Modelling Driver Behaviour in Automotive Environments; Springer: London,
UK, 2007; pp. 85–104.

11. Coulter, R.C. Implementation of the Pure Pursuit Path Tracking Algorithm; Carnegie Mellon University, Robotics Institute: Pittsburgh,
PA, USA, 1992.

12. Hoffmann, G.M.; Tomlin, C.J.; Montemerlo, M.; Thrun, S. Autonomous Automobile Trajectory Tracking for Off-Road Driving:
Controller Design, Experimental Validation and Racing. In Proceeding of the American Control Conference, New York, NY, USA,
9–13 July 2007.

13. Rathgeber, C.; Winkler, F.; Odenthal, D.; Müller, S. Lateral trajectory tracking control for autonomous vehicles. In Proceedings of
the European Control Conference (ECC), Strasbourg, France, 24–27 June 2014.

14. Salvucci, D.D.; Gray, R. A two-point visual control model of steering. Perception 2004, 33, 1233–1248. [CrossRef] [PubMed]
15. Ungoren, A.Y.; Peng, H. An Adaptive Lateral Preview Driver Model. Veh. Syst. Dyn. 2005, 43, 245–259. [CrossRef]
16. Hess, R.A.; Modjtahedzadeh, A. A control theoretic model of driver steering behavior. IEEE Control Syst. Mag. 1990, 10, 3–8.

[CrossRef]
17. McAdam, C.C. An Optimal Preview Control for Linear Systems. J. Dyn. Syst. Meas. Control 1980, 1, 188–190. [CrossRef]
18. Morari, M.; Garcia, C.E.; Prett, D.M. Model Predictive Control: Theory and practice. In Proceedings of the IFAC Model Based

Process Control, Atlanta, GA, USA, 13–14 June 1988.
19. Katriniok, A.; Maschuw, J.P.; Christen, F.; Eckstein, L.; Abel, D. Optimal vehicle dynamics control for combined longitudinal and

lateral autonomous vehicle guidance. In Proceedings of European Control Conference, Zürich, Switzerland, 17–19 July 2013.
20. Jiang, H.; Tian, H.; Hua, Y. Model predictive driver model considering the steering characteristics of the skilled drivers. Adv.

Mech. Eng. 2019, 11, 1687814019829337. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fnbot.2022.883562
https://www.ncbi.nlm.nih.gov/pubmed/35586262
https://doi.org/10.1016/j.ifacol.2021.11.208
https://doi.org/10.1068/p5343
https://www.ncbi.nlm.nih.gov/pubmed/15693668
https://doi.org/10.1080/00423110412331290419
https://doi.org/10.1109/37.60415
https://doi.org/10.1115/1.3139632
https://doi.org/10.1177/1687814019829337

	Introduction
	Materials and Methods
	Methods
	Model Predictive Control
	Pure-Pursuit Controller
	Stanley Controller
	Compensatory Driver Model

	Results
	Evaluation Criteria
	Experiments

	Conclusions
	Contribution
	Limitations
	Outlook

	References

