
Citation: Demeter, Z.; Hell, M.;

Hajgató, G. Lessons Learned from an

Autonomous Race Car Competition.

Eng. Proc. 2024, 79, 25. https://

doi.org/10.3390/engproc2024079025

Academic Editors: András Lajos Nagy,

Boglárka Eisinger Balassa, László

Lendvai and Szabolcs Kocsis-Szürke

Published: 5 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Lessons Learned from an Autonomous Race Car Competition †

Zalán Demeter * , Máté Hell and Gergely Hajgató

HUMDA Lab Nonprofit Ltd., Széchenyi István University, H1113 Budapest, Hungary;
mate.hell@humda.hu (M.H.); gergely.hajgato@humda.hu (G.H.)
* Correspondence: zalan.demeter@humda.hu
† Presented at the Sustainable Mobility and Transportation Symposium 2024, Győr, Hungary, 14–16 October 2024.

Abstract: The advancement of AI technologies and the increasing processing power of computers
have made high-speed autonomous racing possible. Different leagues, such as the Abu Dhabi
Autonomous Racing League (A2RL) and the Indy Autonomous Challenge (IAC), are organizing races
in simulation and with real race cars. In this paper we will describe our experience with the inaugural
A2RL event and a SIM race organized by IAC. With respect to A2RL, we will give an overview of the
physical parameters of the race car, the sensors we worked with, and our software solution including
how we created trajectories for different test scenarios.

Keywords: simulation; autonomous driving; race car driving; autonomous racing; autonomous
vehicles; software development

1. Introduction

While significant effort is taken to reduce the local emissions of passenger cars as
an individual, the sheer number of such vehicles is expected to grow in the forthcoming
years [1]. As car manufacturers are coming closer to the physical limits of pollution
reduction, new approaches are coming into the foreground of research to make mobility
sustainable. Autonomous operation of vehicles is one of the most promising approaches
that can mitigate the environmental effects of passenger vehicles both on the individual
(e.g., automated eco-driving mode [2]) and on the swarm (e.g., platooning [3]) level.

Autonomous driving systems (ADSs) are still in the focus of research as more complex
tasks can be solved with more accessible computational resources and with the advances
in machine learning. Novel ideas cannot be tested on public roads, though, leaving real-
life experiments to closed areas like proving grounds and racetracks. While the former
are suitable to test planned scenarios, autonomous racing involves ad hoc situations that
can be challenging for ADSs in unforeseen ways. Hence, autonomous racing is the test
environment of the cutting-edge solutions in autonomous driving.

The spectrum of autonomous racing is wide, spanning from racing with toy cars
(e.g., F1TENTH [4]) to racing with full-fledged formula cars (e.g., IAC [5] and A2RL [6]).
As only a handful of teams are involved in the latter series, information on series-specific
challenges is somewhat limited.

The present paper summarizes the experiences gained by the team of H UMDA Lab
during the IAC simulation challenge and during the inaugural A2RL race. As a team
participating formerly in the F1TENTH series, we believe, that sharing these insights
contributes to the field of autonomous racing by highlighting the difficulties—with possible
solutions—that arise when starting to experiment with a real-sized autonomous racecar.

2. IAC Simulation Race Event

The IAC Simulation Race Event was a simulation-only competition which included
three challenges, a time trial, a race against an AI-driven opponent, and a similar race but
with noisy GPS signals.

Eng. Proc. 2024, 79, 25. https://doi.org/10.3390/engproc2024079025 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2024079025
https://doi.org/10.3390/engproc2024079025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0009-0005-9882-0270
https://orcid.org/0000-0003-4283-126X
https://doi.org/10.3390/engproc2024079025
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2024079025?type=check_update&version=1


Eng. Proc. 2024, 79, 25 2 of 7

2.1. Simulation Environment

The simulation environment was developed by Autonoma Labs and is built on the
AWSIM environment. It included the physical simulation of the vehicle platform (Dallara
AV-21R) used in IAC [7]. As the race progressed, necessary features such as multi-vehicle
support and GPS dropouts were added for the different rounds. The simulation of the
sensors was limited, not including any perception sensors, and the speed, position and
opponent vehicle position data could be considered ground truth. It provided two interfaces
to control the car, a keyboard-based human control interface and an autonomous interface
accessible via the robot operating system (ROS).

2.2. Software Pipeline

The software pipeline needed to be extensive, as it had to be able to handle different
challenges in different rounds. The task was to complete the fastest possible lap on a
racetrack and to be able to cope with different multi-vehicle environments. To accomplish
this, the pipeline needed to be able to follow, approach, and overtake cars in front of it.
To achieve this, such a software architecture was used that is well known in the field of
robotics and autonomous driving, and in which the design of the necessary autonomous
functions is based on a three-way partitioning of perception–planning–control.

The architecture of the software pipeline and its connection to the simulation environ-
ment is depicted in Figure 1. The perception group processes the simulated sensor data
and other ground truth measurements. The only module in this group, state estimation, is
intended to solve GPS dropout compensation, as near-ground-truth position data could
be obtained from the simulation environment. The detection and tracking of opponent
vehicles are also provided by the simulation.

Eng. Proc. 2024, 79, 25 2 of 7 
 

 

2. IAC Simulation Race Event 
The IAC Simulation Race Event was a simulation-only competition which included 

three challenges, a time trial, a race against an AI-driven opponent, and a similar race but 
with noisy GPS signals. 

2.1. Simulation Environment 
The simulation environment was developed by Autonoma Labs and is built on the 

AWSIM environment. It included the physical simulation of the vehicle platform (Dallara 
AV-21R) used in IAC [7]. As the race progressed, necessary features such as multi-vehicle 
support and GPS dropouts were added for the different rounds. The simulation of the 
sensors was limited, not including any perception sensors, and the speed, position and 
opponent vehicle position data could be considered ground truth. It provided two inter-
faces to control the car, a keyboard-based human control interface and an autonomous 
interface accessible via the robot operating system (ROS). 

2.2. Software Pipeline 
The software pipeline needed to be extensive, as it had to be able to handle different 

challenges in different rounds. The task was to complete the fastest possible lap on a race-
track and to be able to cope with different multi-vehicle environments. To accomplish this, 
the pipeline needed to be able to follow, approach, and overtake cars in front of it. To 
achieve this, such a software architecture was used that is well known in the field of ro-
botics and autonomous driving, and in which the design of the necessary autonomous 
functions is based on a three-way partitioning of perception–planning–control. 

The architecture of the software pipeline and its connection to the simulation envi-
ronment is depicted in Figure 1. The perception group processes the simulated sensor data 
and other ground truth measurements. The only module in this group, state estimation, 
is intended to solve GPS dropout compensation, as near-ground-truth position data could 
be obtained from the simulation environment. The detection and tracking of opponent 
vehicles are also provided by the simulation. 

 
Figure 1. The software solution used by HUMDA Lab for the IAC simulation race follows a pipeline 
structure based on the classical perception–planning–control partitioning. 

The corrected position is the most important input to the planner group. The plan-
ner’s task is to design a feasible and optimal reference for the control algorithm based on 
the vehicle’s position. Three submodules were distinguished, the first being a global tra-
jectory planning submodule that is required to complete the timed laps. To achieve this, 
we use offline trajectory generation and loading within the pipeline. The other two sub-
modules are required to meet multi-vehicle challenges. Predicting the movement of op-
ponent vehicles is necessary to plan the right action at any given time. The task of local 
trajectory planning is to devise a different trajectory from the global one to overtake the 
opponent when the right opportunity arises. To implement these functions, we use a 
graph-based dynamic local path planning approach [8]. 

A simple but robust geometric controller based on the Hoffmann–Stanley algorithm 
was chosen to implement the lateral control of the race car [9]. Due to the nature of the 
simulation environment, the vehicle dynamics are simplified significantly compared to 

Figure 1. The software solution used by HUMDA Lab for the IAC simulation race follows a pipeline
structure based on the classical perception–planning–control partitioning.

The corrected position is the most important input to the planner group. The planner’s
task is to design a feasible and optimal reference for the control algorithm based on the
vehicle’s position. Three submodules were distinguished, the first being a global trajectory
planning submodule that is required to complete the timed laps. To achieve this, we use
offline trajectory generation and loading within the pipeline. The other two submodules are
required to meet multi-vehicle challenges. Predicting the movement of opponent vehicles
is necessary to plan the right action at any given time. The task of local trajectory planning
is to devise a different trajectory from the global one to overtake the opponent when the
right opportunity arises. To implement these functions, we use a graph-based dynamic
local path planning approach [8].

A simple but robust geometric controller based on the Hoffmann–Stanley algorithm
was chosen to implement the lateral control of the race car [9]. Due to the nature of the
simulation environment, the vehicle dynamics are simplified significantly compared to
the real behavior, so many complex effects are negligible. As a result, the stability of such
a geometric controller can also be comparable to more complex predictive or feedback
controllers. The controller consists of four factors: an orientation error term, a position



Eng. Proc. 2024, 79, 25 3 of 7

error term, a yaw compensation term, and a steering delay compensation term. The sum of
the above two error terms and two compensation terms gives the target steering angle at
a given time instant. For the longitudinal control we used a simple PID regulator, which
receives the target velocity from the planner and regulates the current speed by the pedal
positions. These are complemented by the anti-lock braking system (ABS) and traction
control (TC) to improve the stability of the car. The resulting calculated control signals are
directly connected to the vehicle input interface provided by the simulation environment.

We propose this solution based on extensive testing of our autonomous system de-
veloped for F1Tenth competitions [10]. During the development, we evaluated various
software solutions from other teams, including the race-winning architecture following the
sense–think–act paradigm presented by ForzaETH and other reactive methods presented
for solving obstacle avoidance problems [11,12]. Solving the competition tasks required a
modification of the planner module as described above, but the previously used controller
proved to be stable in this simulated environment.

3. A2RL Race Event

The Abu Dhabi Autonomous Racing League organized its first race event in April
2024. Teams could access the cars and the corresponding simulator two months prior to the
race. There were three trials during the event: a time trial where one car was on the tracks,
a head-to-head race with two cars where teams had to showcase their ability to overtake
opponents, and finally a multi-car race during the finale.

3.1. Vehicle Platform

The vehicle platform used in the competition is built on a chassis codenamed EAV24,
which is based on the Dallara SF23 used in the 2023 Super Formula season. One of the
interesting features of the platform is that it allows brake-based torque vectoring, as it has
a brake actuator system that can control four brake circuits separately.

The computer system consists of three main units in addition to low-level controllers
and network devices. The high-performance computer (HPC) for implementing au-
tonomous functions is a rugged Neousys RGS-8805GC model. It is configured with a
powerful processor and graphics card and has a wide range of input and output interface
connectors, as well as an easily expandable storage module. In addition, there is a body
system unit (BSU) which connects the high- and low-level computer systems. This is an
embedded, hard real-time unit collecting data from the chassis sensors and providing them
to the HPC and realizes a well-defined interface to the actuators. The third unit is a logger
module, whose task is to collect and send vehicle data for race control in real time.

The layout of the sensors enabling the implementation of the autonomous functions
is shown in Figure 2. To enable multi-vehicle racing, it is necessary to use many different
types of perception sensors. The car has three Seyond (Innovusion) Falcon Kinetic FK1
LiDAR sensors, providing almost 360 degrees of coverage. These are particularly important
for accurate distance estimation and for certain mapping algorithms. In addition, there are
four ZF ProWave RaDAR sensors, positioned on four sides of the car. These sensors are
essential for the detection and tracking of various opponent vehicles, as they also provide
speed information for the measurement points. In addition, there are seven Sony IMX728
cameras on the car, which can be used to implement surround-view vision, which also
helps in detecting and tracking objects. The Vectornav VN-310 module is a combined GNSS
and IMU (inertial measurement unit) sensor that is particularly useful for positioning
and estimation tasks. There is also a Kistler OSS (optical speed sensor) on the car, which
provides accurate velocity measurement in longitudinal and lateral directions and features
an integrated IMU.



Eng. Proc. 2024, 79, 25 4 of 7
Eng. Proc. 2024, 79, 25 4 of 7 
 

 

 
Figure 2. The vehicle platform used by the A2RL competition. The most important sensors needed 
to implement autonomous functions are shown, excluding those used in classical motor sports. 

3.2. Software Pipeline 
As with the solution used in the IAC simulation race, the software pipeline used in 

the A2RL event also uses the perception–planning–control partitioning. It has a more ex-
tensive feature set than the former, but from an architectural point of view they share 
many similarities with each other. The role of the perception group is prominent, as the 
localization and detection of opponent vehicles is not a trivial problem in a real environ-
ment. 

As shown in Figure 3, the perception group has two submodules, of which state es-
timation takes the most emphasis. Among the sensors of the vehicle platform presented 
above, the localization is implemented by the fusion of GNSS, IMU, and OSS sensors using 
an EKF (extended Kalman filter)-based algorithm. The motion model is based on a simple 
kinematic rigid-body model with the yaw rate from the IMU and the velocity in the lon-
gitudinal and lateral directions from the OSS as input. To implement the opponent detec-
tion, an algorithm based purely on LiDAR measurements is used, which consists of point 
cloud segmentation, down-sampling, and ROI (region of interest) filtering. 

 
Figure 3. The software solution used by HUMDA Lab for the A2RL competition follows a pipeline 
structure based on the classical perception–planning–control three-way partitioning. 

This is followed by the planning group in the pipeline, where an offline global trajec-
tory loader module initializes the planner. These global trajectories serve as the reference 
position and speed for the timed laps. The offline trajectory generation process is de-
scribed in detail in Section 3.3. For solving multi-vehicle challenges, a split-lanes method 
is implemented, wherein three global trajectories are loaded: an ideal line, a line to the left 
of the track, and a line to the right of the track. The task of the local trajectory planner is 
to plan trajectories between these predefined global options. This is achieved by using 
twice continuously differentiable splines, thus ensuring a continuous curvature of the 
moving path. In addition, the velocity profile of the transfer path is continuously matched 
between the start and end points, while maintaining the appropriate physical constraints. 
In addition to these matters, one of the important responsibilities of the planner is to com-
ply with the rules required by race control. These include stopping the race car safely 
under certain conditions, respecting speed limits, and changing the operating states of the 
car. To specify different behaviors, a human–machine interface with a graphical user in-
terface is also developed to give the system adequate supervision. 

Figure 2. The vehicle platform used by the A2RL competition. The most important sensors needed to
implement autonomous functions are shown, excluding those used in classical motor sports.

3.2. Software Pipeline

As with the solution used in the IAC simulation race, the software pipeline used in the
A2RL event also uses the perception–planning–control partitioning. It has a more extensive
feature set than the former, but from an architectural point of view they share many simi-
larities with each other. The role of the perception group is prominent, as the localization
and detection of opponent vehicles is not a trivial problem in a real environment.

As shown in Figure 3, the perception group has two submodules, of which state
estimation takes the most emphasis. Among the sensors of the vehicle platform presented
above, the localization is implemented by the fusion of GNSS, IMU, and OSS sensors
using an EKF (extended Kalman filter)-based algorithm. The motion model is based on a
simple kinematic rigid-body model with the yaw rate from the IMU and the velocity in
the longitudinal and lateral directions from the OSS as input. To implement the opponent
detection, an algorithm based purely on LiDAR measurements is used, which consists of
point cloud segmentation, down-sampling, and ROI (region of interest) filtering.

Eng. Proc. 2024, 79, 25 4 of 7 
 

 

 
Figure 2. The vehicle platform used by the A2RL competition. The most important sensors needed 
to implement autonomous functions are shown, excluding those used in classical motor sports. 

3.2. Software Pipeline 
As with the solution used in the IAC simulation race, the software pipeline used in 

the A2RL event also uses the perception–planning–control partitioning. It has a more ex-
tensive feature set than the former, but from an architectural point of view they share 
many similarities with each other. The role of the perception group is prominent, as the 
localization and detection of opponent vehicles is not a trivial problem in a real environ-
ment. 

As shown in Figure 3, the perception group has two submodules, of which state es-
timation takes the most emphasis. Among the sensors of the vehicle platform presented 
above, the localization is implemented by the fusion of GNSS, IMU, and OSS sensors using 
an EKF (extended Kalman filter)-based algorithm. The motion model is based on a simple 
kinematic rigid-body model with the yaw rate from the IMU and the velocity in the lon-
gitudinal and lateral directions from the OSS as input. To implement the opponent detec-
tion, an algorithm based purely on LiDAR measurements is used, which consists of point 
cloud segmentation, down-sampling, and ROI (region of interest) filtering. 

 
Figure 3. The software solution used by HUMDA Lab for the A2RL competition follows a pipeline 
structure based on the classical perception–planning–control three-way partitioning. 

This is followed by the planning group in the pipeline, where an offline global trajec-
tory loader module initializes the planner. These global trajectories serve as the reference 
position and speed for the timed laps. The offline trajectory generation process is de-
scribed in detail in Section 3.3. For solving multi-vehicle challenges, a split-lanes method 
is implemented, wherein three global trajectories are loaded: an ideal line, a line to the left 
of the track, and a line to the right of the track. The task of the local trajectory planner is 
to plan trajectories between these predefined global options. This is achieved by using 
twice continuously differentiable splines, thus ensuring a continuous curvature of the 
moving path. In addition, the velocity profile of the transfer path is continuously matched 
between the start and end points, while maintaining the appropriate physical constraints. 
In addition to these matters, one of the important responsibilities of the planner is to com-
ply with the rules required by race control. These include stopping the race car safely 
under certain conditions, respecting speed limits, and changing the operating states of the 
car. To specify different behaviors, a human–machine interface with a graphical user in-
terface is also developed to give the system adequate supervision. 

Figure 3. The software solution used by HUMDA Lab for the A2RL competition follows a pipeline
structure based on the classical perception–planning–control three-way partitioning.

This is followed by the planning group in the pipeline, where an offline global trajec-
tory loader module initializes the planner. These global trajectories serve as the reference
position and speed for the timed laps. The offline trajectory generation process is described
in detail in Section 3.3. For solving multi-vehicle challenges, a split-lanes method is im-
plemented, wherein three global trajectories are loaded: an ideal line, a line to the left of
the track, and a line to the right of the track. The task of the local trajectory planner is
to plan trajectories between these predefined global options. This is achieved by using
twice continuously differentiable splines, thus ensuring a continuous curvature of the
moving path. In addition, the velocity profile of the transfer path is continuously matched
between the start and end points, while maintaining the appropriate physical constraints.
In addition to these matters, one of the important responsibilities of the planner is to comply
with the rules required by race control. These include stopping the race car safely under
certain conditions, respecting speed limits, and changing the operating states of the car. To



Eng. Proc. 2024, 79, 25 5 of 7

specify different behaviors, a human–machine interface with a graphical user interface is
also developed to give the system adequate supervision.

For the lateral control a steering controller using both feedback and feedforward
mechanisms is used to ensure the stability of the vehicle even at the limits of handling and
to minimize the lateral deviation from the reference path [13]. This geometric controller
is robust to sudden increases in error terms and parameter-invariant over a reasonable
range. The longitudinal control is realized by a PI controller based on a force requirement,
handling engine braking and the proper calculation of the acceleration and braking forces.

Publications from teams experienced in IAC competitions played a major role in the
selection of software solutions. The supervisory architecture used by TII EuroRacing and
the perception–planning–control partitioning architecture developed by TUM Autonomous
Motorsport were used as a baseline [14,15]. However, instead of the complex predictive
approaches presented by them, we opted for simpler, robust solutions to facilitate our
introduction to the competition series.

3.3. Trajectory Generation and Validation

As some of the tasks depend on different trajectories—such as driving out from the
pit or stopping on the grid—the car is the closest to its physical limits while driving on the
ideal line—or so-called race line—with the highest speed possible. Hence, the race line
trajectory has a distinguished role among the others, and the corresponding speed profile
is an integral part of it.

Candidates for race lines lie on the Pareto front of trajectories considering their length
and the average velocity achievable on them, making the race line generation process a
multi-objective optimization. Achievable velocities are approximated with the curvature of
the trajectory in the optimization, as it is in direct correlation with the largest feasible speed
and can be calculated without modelling the dynamics of the vehicle. As the curvature
has a greater effect on the lap times, the length of the race line can be left out from the
optimization. Such a generation process is called minimum-curvature trajectory planning,
and it has proved to be robust in real-life racing conditions [16]. In contrast, obtaining an
optimal target speed profile depends on a calibrated vehicle model, which was available
to the teams of A2RL in a closed-source simulator only, making the usability of the model
limited for optimization.

To overcome this shortage, both the trajectory and the speed profile generation were
left to a human driver, who drove multiple laps in the simulator. The recorded laps were
analyzed by a race engineer, and the valuable parts were fitted together to form a full lap.
The merging technique was the same as for the split-lanes method: the curves were joined
by a cubic spline with C2 continuity, and the speed profiles were joined with a smooth
linear transition. The length of the joining sections was a parameter, and the fine-tuning
of the speed profile was also possible. The final trajectories were then re-evaluated in
the simulator to reveal those areas where the car cannot follow the trajectory due to the
limitations of the controller.

4. Software Scaling

Testing full-scale autonomous race cars can be expensive due to high component
costs and frequent software failures. Therefore, we believe that initial real-world testing of
software should be conducted on small-scale platforms and scaled up gradually. This brings
several challenges, which we have also faced in the transition from the F1TENTH platform.
The main challenge lies in the different hardware sets provided by the vehicle platform.
In addition, different race cars have different dynamic properties and therefore require
distinct software solutions to be competitive. In our architecture, we use a thin hardware
layer and easily interchangeable modular components that allow multiple pipelines to
run in parallel. This enables us to develop algorithms for different platforms in an easily
adaptable uniform system [17].



Eng. Proc. 2024, 79, 25 6 of 7

5. Conclusions

This paper described two distinct autonomous race car competitions, the software
pipelines we used during the events, our solution to generate trajectories for different race
scenarios, and our experience in tackling the challenges encountered. In the IAC Simulation
Race Event participants had to tackle three challenges in a simulator, and in the A2RL eight
teams had to compete with real race cars. While a simulator with high-fidelity physics was
provided by the IAC to conduct the races, some major environmental effects such as wind,
weather-dependent track temperature, etc., were not considered in the simulation, and all
the sensor signals were free from noise except the GPS in a confined segment of the track.
In contrast, our team faced highly varying track temperature, wind gusts, and noisy sensor
signals at the A2RL competition. Despite the differing environments, our team achieved
fourth place in the IAC simulator challenge and fifth place at the inaugural A2RL event,
proving the robustness of the applied software solution.

Author Contributions: Conceptualization, Z.D. and G.H.; methodology, Z.D. and G.H.; software,
Z.D.; validation, M.H., G.H. and Z.D.; formal analysis, M.H.; investigation, M.H. and Z.D.; resources,
Z.D. and G.H.; data curation, M.H.; writing—original draft preparation, Z.D., M.H. and G.H.;
writing—review and editing, Z.D.; visualization, Z.D.; supervision, Z.D.; project administration, G.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors and the affiliated institution declare that there are no conflicts of
interest related to this publication.

References
1. Statista Passenger Cars-Worldwide. Available online: https://www.statista.com/outlook/mmo/passenger-cars/worldwide#

unit-sales (accessed on 3 July 2024).
2. Wadud, Z.; MacKenzie, D.; Leiby, P. Help or Hindrance? The Travel, Energy and Carbon Impacts of Highly Automated Vehicles.

Transp. Res. Part A Policy Pract. 2016, 86, 1–18. [CrossRef]
3. Mersky, A.C.; Samaras, C. Fuel Economy Testing of Autonomous Vehicles. Transp. Res. Part C Emerg. Technol. 2016, 65, 31–48.

[CrossRef]
4. O’Kelly, M.; Sukhil, V.; Abbas, H.; Harkins, J.; Kao, C.; Pant, Y.V.; Mangharam, R.; Agarwal, D.; Behl, M.; Burgio, P. F1/10: An

Open-Source Autonomous Cyber-Physical Platform. arXiv 2019, arXiv:1901.08567.
5. Indy Autonomous Challenge. Available online: https://www.indyautonomouschallenge.com/ (accessed on 1 February 2024).
6. ASPIRE Abu Dhabi Autonomous Racing League in UAE. Available online: https://a2rl.io/ (accessed on 1 February 2024).
7. Autonoma Inc. AWSIM Racing Simulator. Available online: https://github.com/autonomalabs/AWSIM (accessed on 3

July 2024).
8. Betz, J.; Wischnewski, A.; Heilmeier, A.; Nobis, F.; Hermansdorfer, L.; Stahl, T.; Herrmann, T.; Lienkamp, M. A Software

Architecture for the Dynamic Path Planning of an Autonomous Racecar at the Limits of Handling. In Proceedings of the 2019
IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, 4–8 November 2019.

9. Hoffmann, G.M.; Tomlin, C.J.; Montemerlo, M.; Thrun, S. Autonomous Automobile Trajectory Tracking for Off-Road Driving:
Controller Design, Experimental Validation and Racing. In Proceedings of the 2007 American Control Conference, New York, NY,
USA, 9–13 July 2007; pp. 2296–2301.

10. Fazekas, M.; Demeter, Z.; Tóth, J.; Bogár-Németh, Á.; Bári, G. Evaluation of Local Planner-Based Stanley Control in Autonomous
RC Car Racing Series. In Proceedings of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Republic of Korea, 2–5
June 2024. [CrossRef]

11. Baumann, N.; Ghignone, E.; Kühne, J.; Bastuck, N.; Becker, J.; Imholz, N.; Kränzlin, T.; Lim, T.Y.; Lötscher, M.;
Schwarzenbach, L.; et al. ForzaETH Race Stack—Scaled Autonomous Head-to-Head Racing on Fully Commercial Off-
the-Shelf Hardware. J. Field Robot. 2024. [CrossRef]

12. Sezer, V.; Gokasan, M. A Novel Obstacle Avoidance Algorithm: “Follow the Gap Method”. Robot. Auton. Syst. 2012, 60, 1123–1134.
[CrossRef]

https://www.statista.com/outlook/mmo/passenger-cars/worldwide#unit-sales
https://www.statista.com/outlook/mmo/passenger-cars/worldwide#unit-sales
https://doi.org/10.1016/j.tra.2015.12.001
https://doi.org/10.1016/j.trc.2016.01.001
https://www.indyautonomouschallenge.com/
https://a2rl.io/
https://github.com/autonomalabs/AWSIM
https://doi.org/10.1109/IV55156.2024.10588629
https://doi.org/10.1002/rob.22429
https://doi.org/10.1016/j.robot.2012.05.021


Eng. Proc. 2024, 79, 25 7 of 7

13. Kapania, N.R.; Gerdes, J.C. Design of a Feedback-Feedforward Steering Controller for Accurate Path Tracking and Stability at the
Limits of Handling. Vehicle Syst. Dyn. 2015, 53, 1687–1704. [CrossRef]

14. Raji, A.; Caporale, D.; Gatti, F.; Giove, A.; Verucchi, M.; Malatesta, D.; Musiu, N.; Toschi, A.; Popitanu, S.; Bagni, F.; et al.
er.autopilot 1.0: The Full Autonomous Stack for Oval Racing at High Speeds. Field Robot. 2024, 4, 99–137. [CrossRef]

15. Betz, J.; Betz, T.; Fent, F.; Geisslinger, M.; Heilmeier, A.; Hermansdorfer, L.; Herrmann, T.; Huch, S.; Karle, P.; Lienkamp, M.; et al.
TUM autonomous motorsport: An autonomous racing software for the Indy Autonomous Challenge. J. Field Robot.
2023, 40, 783–809. [CrossRef]

16. Heilmeier, A.; Wischnewski, A.; Hermansdorfer, L.; Betz, J.; Lienkamp, M.; Lohmann, B. Minimum Curvature Trajectory Planning
and Control for an Autonomous Race Car. Vehicle Syst. Dyn. 2020, 58, 1497–1527. [CrossRef]

17. Demeter, Z.; Bogdán, P.; Bogár-Németh, Á.; Bári, G. Scalable Supervisory Architecture for Autonomous Race Cars. In Proceedings
of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Republic of Korea, 2–5 June 2024; pp. 264–271.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/00423114.2015.1055279
https://doi.org/10.55417/fr.2024004
https://doi.org/10.1002/rob.22153
https://doi.org/10.1080/00423114.2019.1631455

	Introduction 
	IAC Simulation Race Event 
	Simulation Environment 
	Software Pipeline 

	A2RL Race Event 
	Vehicle Platform 
	Software Pipeline 
	Trajectory Generation and Validation 

	Software Scaling 
	Conclusions 
	References

