
Citation: Nagy, J.; Lakatos, I.

Predictive Maintenance and

Predictive Repair of Road

Vehicles—Opportunities, Limitations

and Practical Applications. Eng. Proc.

2024, 79, 27. https://doi.org/

10.3390/engproc2024079027

Academic Editors: András

Lajos Nagy, Boglárka Eisinger

Balassa, László Lendvai and

Szabolcs Kocsis-Szürke

Published: 5 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Predictive Maintenance and Predictive Repair of Road
Vehicles—Opportunities, Limitations and
Practical Applications †

Jozsef Nagy * and Istvan Lakatos

Department of Road and Rail Vehicles, Audi Hungaria Vehicle Engineering Faculty, Szechenyi Istvan University
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Abstract: With drastic increases in the complexity of road vehicles, increasing environmental and
cost pressures have led to the obsolescence of previous fixed-schedule maintenance systems. The
aerospace industry, following the road vehicle industry, is also beginning to use the predictive
maintenance method increasingly widely. A possible next step for critical breakdowns could be a
predictive service. While preventive maintenance is able to be used more frequently, the possibility of
preventive repair is also limited to the fault symptoms, and is unsuitable for preventing fast-running
breakdowns. Due to the current state of technological development in this area, it will take a few more
years for lower-priced cars to catch up to the sensor and data structures of current premium-series
vehicles, such that the mass use of these methods in road vehicles can become widespread.

Keywords: online collected vehicle data; predictive maintenance; predictive repair; machine learning;
deep learning; recall; product liability; product field observing

1. Introduction

The possible failure of the systems of modern, increasingly complex road vehicles
has a high cost beyond customer dissatisfaction. In previous practices, repair occurred
after a breakdown. This is termed reactive maintenance or repair. This was followed
by preventive maintenance or repair to increase operational safety [1]. Here, based on
experience values, parts or substances are automatically changed after a certain operating
hour or mileage, e.g., oil, air filters, timing belts, or chains. This is a very expensive method,
so it is spread mainly in the aviation industry [2]. In the automotive industry, it has only
become widespread for a few parts, e.g., those mentioned above, which has a strong
impact on the reliability, fuel consumption, or service life of the car. The new trend in
the automotive industry is predicting the timeliness of maintenance tasks using various
methods [2]. Based on a state-of-the-art approach, we try to predict wear with the help
of modeling supported by new technologies like AI/ML/NNs or digital twins and only
install the new part immediately before maintenance is needed, or in the case of preventive
replacement [1,3,4]. More systems in vehicles are covered with predictive solutions. The
latest approach is to call the car into service for predictive repair in the event of a critical
breakdown, e.g., to bring the car into service, before customer complaints.

2. Method of Predictive Maintenance/Repair Process Supported by Machine Learning
in the Automotive Industry

Today, the application of data science to solve technical problems has spread in many
areas, including the automotive industry.

Machine learning (ML) and neural networks (NN) can prove useful for determining
trends and anomalies within the field of artificial intelligence (AI) [5]. Figure 1 below
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shows the data science process [6]: the first step is always the establishment of busi-
ness/process/system understanding, as a basis for data understanding. Then, the data
must be prepared, by eliminating empty or incorrect values from data tables or time series
for modeling. For this purpose, Python is perhaps the most widely used language. Its
advantages include the fact that it does not necessarily need to be installed (see Google
Colab Python 3.10), contains various pre-made libraries and applications, and allows for
the possibility of directly importing online or web data. To improve the model, it needs
to be evaluated and trained. The data can consist of measured values from control unit
sensors, DFCCs (diagnostic failure counter codes), or DTCs (diagnostic trouble codes);
considering that many early DFCCs can cause a DTC, it is a better prediction method. The
data can be collected online or offline in control units or internal/external data loggers.
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Figure 1. Process of data science/modeling: preparation of data (elimination of unnecessary/incorrect
values, clustering . . .) and continuous training of model until target reliability is obtained.

2.1. Predictive Maintenance (PM) in the Automotive Sector

Until now, preventive maintenance has dominated the car repair industry. As a
result of the much higher complexity of vehicles, possible field repair costs have increased
drastically. To prevent this and reduce the TCO (total costs of ownership) at the same
time, more manufacturers have started to use predictive maintenance in field service after
it began to be implemented in manufacturing. Here, instead of the previous fixed-parts
replacement intervals, flexible replacement times determined by artificial intelligence-based
predictive models are used.

Typical systems eligible for predictive maintenance:

• high voltage (HV) battery systems [7,8];

(delta gradient of isolation resistance, cell voltage balancing . . .)

• battery junction box (reed) relays (condition);
• brake pads (condition) [9];
• (wear of) tires [10];
• air conditioning (gas filling status);
• 12 V batteries (condition) (SoH: state of health);
• E-machine/HV batteries (coolant level) [11];
• (condition of) dampers (suspension) [12].

2.2. Preventive Repair or Service (PS) in the Automotive Sector

Preventive repair goes beyond predictive maintenance, where the customer typically
receives information about upcoming maintenance activities through a mobile phone app.
Here, we use AI- and ML-based predictive models to determine not only typically mainte-
nance, but incidental as well, and specific fault-preventative fixes for critical, expensive,
and tow-in related errors. Here, the customer receives a repair appointment from the
service as part of a quasi-service field action.

However, a number of legal issues should be considered in this case:
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• handling of cars within/outside of warranty period;
• warranty parts’ cost charges to suppliers;
• reliability of models, since affected parts are still functional at the time of repair;
• product liability legislation: handling of tow-in vs. other issues with the same symp-

tom, and business case approaches.

2.3. A Possible Process for Automotive Field Observation

1. definition of critical vehicle systems;
2. data collecting campaign—GDPR in the EU must be considered [13];
3. modeling (see Figure 1 above);
4. determining of affected cars;
5. service countermeasures with customer contact;

In addition to brand image and customer satisfaction being raised up, the system can
prevent potential tow-ins. The warranty/repair costs can also be reduced by avoiding
towing/rescuing (which means mobility-preventive measures).

The total repair costs of a car can be expressed as [4]:

C sum = ∑n
i=1 (C reactive + C preventive + C predictive − C mobility)× Ni (1)

where

Ni represents the number of inspections;
C reactive: costs of reactive repairs in the case of unpredictable failures;
C preventive: costs of preventive maintenance, e.g., oil and oil filters, air filters, V-belts, etc.;
C predictive: predictable repair costs, e.g., the replacing of high voltage battery modules;
C mob: the saving of mobility costs in the case of preventing tow-ins (rental cars, towing
in. . .).

This C mob amount is a financial optimization potential for preventive repair vs.
predictive maintenance [4]. The original formula has been added here with the mobility
cost potential of preventive repair, see Figure 2.Eng. Proc. 2024, 79, x 4 of 7 
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predictive repair.

3. Results and Findings: Limits of Use Cases of Predictive Maintenance and
Predictive Repair

There are limitations to using both methods. For example, the availability of different
kinds of measured values (time series) over some time or at all. The measured data
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should be as current as possible, ideally real-time, otherwise either an outage prognosis
will be made only after the complaint or, alternatively, before, but with too little time for
preventive action.

The legal background must be considered too, especially regarding access to customer
data and product liability [14]. In the case of a predictive repair of potentially critical claims,
there are market surveillance regulations as a compliance factor [15].

In general, it is also not possible to collect any amount of data online for preventive
purposes. One reason for this is the cost for mobile data that OEMs must pay, which
increases the automaker’s fixed costs.

At the same time, the data collection and transferring capacity of the car’s data
collection unit and the OEM backend infrastructure also set limits. Increasing these data
storage and processing capabilities is also a cost factor (see also Section 2.3 point 2). Figure 3
below shows two typical use cases for the coolant-level monitoring method of the electric
drive engine of a BEV (battery electric vehicle). The cheaper method builds a short circuit
with the coolant water through its two poles. The disadvantage of this is that only two
discrete signals are sent to the control unit: either the coolant liquid level is sufficient or too
low. So, this method of diagnosis is not usable for both predictive methods.Eng. Proc. 2024, 79, x 5 of 7 
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Figure 3. Methods of coolant-level monitoring in electric drive motors: there are no sensors with
discrete signals, and parts with continuous signals are eligible for predictive purposes.

The NTC (negative temperature coefficient thermistor) resistor technique on the right
side of the figure can be suitable as a basis for both predictive maintenance and preventive
service at higher component costs, because it provides continuous feedback (signal) on the
refrigerant level.

It follows from the above that due to possible additional sensors, data storage, and
transmission costs, it is not advisable to use the predictive or preventive method in every use
case. It can be applied even more narrowly due to the legal circumstances, e.g., regarding
product liability [12]; therefore, it should be used to prevent critical errors such as tow-ins.
Experience so far has shown that an important condition for applying both predictive
methods is that the design must allow for the recording, storage, and transmission of
certain measurement data from the vehicle. For this reason, it is advisable to start a
“lessons learned” process as part of the review of the technical problem resolution process
(manufacturing and field); see Figure 4 below [16].
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Figure 4. The RD (robust design) process: the requirements for new sensors include that there be
an appropriate signal quantity/quality, as lessons learned has been defined as a key factor for the
continuous improvement of predictable systems in future projects.

4. Conclusions: Starting of Lessons Learned Process Required

Predictive maintenance and repair will probably gain ground in the coming years.
The essence of predictive maintenance is in suggesting flexible intervals based on

a model estimating component wear and tear instead of previously used fixed service
intervals, thus optimizing operating costs. The aim of the new approach, preventive repair,
is to predict potential critical breakdowns with the help of models and to order the vehicle
to the workshop before they occur. So, the main difference between PM and PS is that PM
provides information to the customer about the status of each system in the vehicle and
the need for maintenance via the mobile app. At the same time, PS skips this and urgently
orders it for service. At the same time, both methods require up-to-date, preferably online,
data to intervene before the projected failure.

Here, it should be established whether data sampling of a given quality and frequency
would be suitable as a basis for a predictive model. If not, it is advisable to review the
future application for the necessary new sensor (business case).

The main message of this article is the focus on practical/processual implementation,
with an informatic (data quantity and quality) and legal (data security, product liability,
and market surveillance) background.

Since most key errors are currently software-related, it is necessary to conduct research
where potential software errors can be predicted using mathematical models.
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