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Abstract: One of the most significant challenges in sustainable autonomous mobile robot and
vehicle development is the perception of stochastic environments. Various environmental perception
methods have been proposed to address these challenges; however, these methods often lack general
applicability. Many of these methods rely on environmental feature extraction, which can fail in
specific scenarios, such as monochromatic environments. This article aims to evaluate existing SLAM
(Simultaneous Localization and Mapping) methods that utilize camera or combined camera and
LiDAR input data in predominantly monochromatic environments. Additionally, this study seeks to
identify performance issues in such applications.
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1. Introduction

The development of different autonomous mobility solutions, including self-driving
passenger vehicles (such as robotaxis and autonomous shuttle buses), has significant
potential to increase the sustainability of everyday transportation. However, autonomous
transportation has not been implemented with a sufficient number of vehicles, and in
addition to financial and legislative reasons, there are still many technological reasons
behind this metric. One of the most challenging technology-related questions regarding
self-driving transportation is environmental perception in stochastic environments.

Simultaneous Localization and Mapping (SLAM) is crucial for autonomous environ-
mental perception, enabling robots to navigate and build maps for future use in completely
unknown environments. SLAM methods are essential for various applications, including
almost all kinds of autonomous vehicles from small ground-based or aerial delivery robots
to passenger vehicles such as taxis and shuttle buses.

The spreading of solutions based on autonomous transportation often begins with the
introduction of self-driving vehicles in closed, highly manageable areas, such as parks or
campuses. Despite reducing the stochasticity of the environment, these locations are often
uniform, lacking diverse environmental features. This phenomenon raises new questions,
since many SLAM methods rely on feature extraction. One particular environment type
that raises questions regarding the applicability of camera-based SLAM methods consists
of locations containing objects that manifest a limited number of colors, or different shades
of only one color, often referred to as monochromatic environments.

The aim of this paper is to list, compare, and evaluate vision-based SLAM methods
regarding their applicability in monochromatic environments based on a literature review.
The main focus of the comparison lies on SLAM methods that can be implemented using
input from exteroceptive sensors that gather colored image information with or without
additional depth data (monocular color cameras or stereo/depth color cameras). This
paper is the precursor of future work based on the implementation of a camera-based
SLAM method in a monochromatic environment, and since there are numerous available
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SLAM methods, it is considered a necessary first step to assess them based on the available
literature before their implementation.

2. Methods
2.1. Comparison Based on Literature Review

Environmental perception for autonomous vehicles is one of the most important fields,
making methods such as SLAM extensively researched and varied. This variety leads
to many approaches from different perspectives, suited for the needs of individual use
cases. Thus, research and development based on SLAM methods requires the comparative
assessment of existent possible approaches [1]. This literature review-based comparison
procedure requires the creation of a system of criteria then, the selected SLAM methods are
assessed based on this system. Finally, a comparison can be set up, enabling a final decision
to be reached.

In the case of this study, the system of criteria is constructed based on the key require-
ments of autonomous transportation systems’ environmental perception: the type of input
data, determined by the available exteroceptive on-board sensors; the expected accuracy
of the output; robustness, i.e., the handling of lighting changes and dynamic obstacles;
the hardware requirements (some autonomous vehicles feature limited computational
power); the type of output map; and, finally, the results in monochromatic, feature-poor
environments.

The four selected methods for comparison all use camera images as their input data.
These methods encompass both feature-based and direct techniques, allowing for a compre-
hensive evaluation of their performance in feature-poor and monochromatic environments.
Their widespread recognition in research and varying scalability make them suitable for
diverse use cases, from small-scale indoor navigation to large-scale outdoor mapping.
This selection ensures a thorough assessment of the methods’ accuracy, robustness, and
computational efficiency, particularly in challenging environments.

2.2. Assessed SLAM Methods
2.2.1. ORB-SLAM2

ORB-SLAM2 is a feature-based visual SLAM method that utilizes Oriented FAST
and Rotated BRIEF (ORB) features [2]. It supports the usage of monocular, stereo, and
RGB-D cameras as input data. ORB-SLAM2 is known for its robustness and accuracy, and
it has functionalities such as tracking, mapping, and loop closure. Its reliance on visual
features makes it effective in feature-rich environments but challenging to use successfully
in monochromatic settings [3]. Because of its high reliance on features, it is generally
expected to perform poorly in monochromatic environments.

2.2.2. DSO

DSO is a direct visual odometry method that uses pixel intensities rather than basing
the SLAM process on feature extraction. Its relatively high accuracy and efficiency originate
from the method on which this approach is based. It operates on sparse sets of pixel
patches. DSO can be successfully implemented using a monocular camera. Its main
drawback manifests in environments with changing lighting conditions, as it may show
dropping accuracy in the event of drastic lighting changes [4].

2.2.3. LSD-SLAM

LSD-SLAM (Large-Scale Direct Monocular SLAM) is a direct SLAM method that,
similarly to DSO, processes pixel intensities directly rather than relying on feature extrac-
tion. It is capable of real-time, semi-dense 3D reconstruction using a monocular camera.
LSD-SLAM is advantageous in large-scale environments but can be sensitive to lighting
conditions and computationally demanding [5]. Furthermore, amongst many feature-based
approaches, LSD-SLAM might be a feasible option in case of feature-poor environments.
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2.2.4. RTAB-Map

RTAB-Map (Real-Time Appearance-Based Mapping) is a graph-based visual SLAM
method that is intended to perform real-time processing. It supports all three of the usual
camera types for robotic applications—RGB-D, stereo, and monocular cameras. Processing
is based on visual and spatial data. Its most significant advantage is that it can handle large
environments and can perform loop-closure detection with high efficiency [6].

2.2.5. PTAM

PTAM (Parallel Tracking and Mapping), as its name suggests, separates tracking and
mapping tasks into two different, parallel threads [7].

3. Results

The results of the comparison carried out based on relevant literature is presented
according to the criteria defined before. A comparison is set up based on this system of
criteria, presented in Table 1.

Table 1. Comparative assessment of the ORB-SLAM2, DSO, LSD-SLAM, RTAB-Map, and PTAM
methods.

Features,
Characteristics ORB-SLAM2 DSO LSD-SLAM RTAB-Map PTAM

Input data
Images from

monocular, stereo,
or RGB-D cameras

Images from
monocular camera

Images from
monocular camera

Images from
monocular, stereo,
or RGB-D cameras

Images from
monocular camera

Expected accuracy

High, but only in
the case of

feature-rich
environments

High in
texture-rich,

well-lit
environments

Moderate in
texture-rich

environments

High in large
environments

High in
small-scale, static

environments

Robustness

Low in dynamic
environments;
high in static,

consistent
environments

Acceptable in
texture-poor

environments, but
sensitive to

lighting changes

High in large
environments; low
in case of changes

in lighting
conditions

Robust in
large-scale

environments

Limited to
small-scale, static

environments

Hardware
requirements

High (feature
extraction and

matching)

Moderate for
real-time 2D

mapping

High (direct pixel
intensity

processing)

Efficient; well
suited for real-time

applications

Efficient in
small-scale,

real-time
applications

Map type Sparse 2D or 3D Sparse 3D map Semi-dense 3D Dense 3D map Sparse 2D map

Implementation
Moderate; requires

calibration and
related setup

Easy, with careful
setup

Moderate, highly
relies on

dependencies
Easily adaptable

Easy in case of
small, simple
environments

Results in
monochromatic
environments

Reduced
performance Reduced

Good performance
with proper

lighting conditions

Moderate
performance

depending on
features and

lighting

Low in
feature-poor,

poorly lit
environments

3.1. Accuracy

ORB-SLAM2 demonstrates high accuracy in environments with distinct visual features,
but this performance can significantly drop due to the lack of detectable features.

DSO, since it is a direct method relying on pixel intensity values, manifests high
accuracy in environments where feature extraction might not lead to acceptable results.
Furthermore, it can provide precise odometry. It is important to mention that its accuracy
can only be expected if proper lighting conditions are provided.
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LSD-SLAM provides semi-dense 3D maps with good accuracy in textured environ-
ments. Its direct approach allows it to work reasonably well in monochromatic settings,
although it can struggle with lighting variations.

RTAB-Map usually tends to be less accurate in general environments than methods
similar to ORB-SLAM2, but it works well in large-scale environments and provides correct
loop-closure detection.

PTAM shows its best accuracy in small-scale environments without the presence of
dynamic objects. Its accuracy drops if it is applied in larger or highly complex environments.

3.2. Robustness

ORB-SLAM2 can be highly robust in environments with consistent and rich features,
but it loses this characteristic in dynamic or low-texture settings.

DSO is highly robust in problematic environments such as areas with a limited number
of features, colors or textures. However, it is nearly impossible to implement this method
in environments with illumination that presents rapid changes in color or brightness.

LSD-SLAM is considered less robust because of its sensitivity to lighting changes and
low-texture environments, but it can be still effective in large-scale environments with
adequate lighting.

RTAB-Map, when applied in large-scale environments, is a highly robust algorithm.
However, from the main point of view of this article, it lacks robustness, since it cannot
perform well in feature-poor or monochromatic environments.

PTAM is less robust than ORB-SLAM2 or RTAB-Map. Its applicability is limited to
small-scale environments.

3.3. Computational Efficiency

ORB-SLAM2 is computationally intensive due to the processes involved in feature
extraction and matching. It requires significant processing power, especially in real-time
applications.

DSO’s computational efficiency depends heavily on its application. It can be consid-
ered computationally efficient compared to fully dense methods, but its real-time appli-
cability depends on the optimization level of the given implementation. Furthermore, its
efficiency is significantly compromised by large changes in the lighting conditions.

LSD-SLAM is, again, computationally demanding because it processes large quantities
of image data directly. It requires careful management of computational resources.

RTAB-Map was designed for real-time performance even in large-scale environments.
Because of techniques such as visual bag-of-words for appearance-based loop closure, it
usually performs well from the point of view of efficiency.

PTAM is computationally efficient in small-scale environments. In these environments,
it manifests easy real-time applicability. However, this efficiency does not scale well for
large-scale environments.

3.4. Implementation Workflow

ORB-SLAM2 is moderately easy to set up. It requires careful calibration and tuning
of parameters. It is supported by comprehensive documentation and active community
support.

DSO is generally straightforward to implement, but because of sensitivity to lighting
conditions, its input sensor requires careful installation.

LSD-SLAM is generally easy to set up. It requires handling of dependencies and
management of computational load, but it has active support in academic research with
various forks and improvements available. It has had less industrial adoption than ORB-
SLAM2.

RTAB-Map has well-documented, modular implementation that supports monocular,
stereo, and RGB-D cameras. It is supported by a large user community.
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PTAM is very simple to set up for simple, small-scale applications but highly difficult
to implement in larger, more complex environments.

4. Discussion

The comparison presented in this paper highlights the strengths and weaknesses
of each SLAM method, focusing on general criteria important from the point of view
of environmental perception by autonomous vehicles. Furthermore, an assessment of
behavior in monochromatic environments is included. Among the four compared SLAM
methods, ORB-SLAM2 excels in feature-rich environments but faces challenges in low-
texture settings. DSO, with its direct sparse odometry approach, performs well in low-
texture environments but is sensitive to drastic lighting changes. LSD-SLAM offers an
alternative with its direct approach, handling large-scale environments effectively. Its most
significant drawback is that it requires the careful and proper management of lighting
conditions and computational resources. RTAB-Map, designed for real-time appearance-
based mapping, is particularly robust in large-scale environments with efficient loop-closure
detection but may struggle in feature-poor environments. Lastly, PTAM, though primarily
used in small-scale augmented reality applications, provides high accuracy in controlled
environments but is limited in its robustness and scalability for more complex settings.

5. Conclusions and Future Work

In conclusion, if applicability in monochromatic, feature-poor environments is an
important factor, DSO and LSD-SLAM can be considered viable options amongst the
assessed SLAM methods. DSO performs well in texture-poor environments but may
struggle with rapidly changing lighting conditions. LSD-SLAM, with its direct approach, is
suitable for large-scale, feature-poor environments, though careful management of lighting
and computational resources is necessary. In the case of 3D outdoor environments that lack
distinct features and textures, the application of LSD-SLAM is recommended.

Future work will include the assessment of LSD-SLAM with real environmental data
acquired in specific monochromatic environments, using the same sensor set and similar
lighting conditions.
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