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Abstract: In the automotive industry, the reduction of development costs is of key importance.
The development of electrical hardware is an expensive, time-consuming process with a lot of
development stages (e.g., prototyping, electrical testing, mechanical testing, lifecycle testing). There is
a growing need to increase the cost-effectiveness of the development and testing phases of embedded
software using virtualization. Using this method, less prototype manufacturing is necessary since the
simulations allow for faster and more effective discovery of a large portion of possible faults without
building a hardware prototype. Renode is an open source embedded system simulation framework
that facilitates software-based testing. The main goal of this paper is to explore the usability of the
framework for automotive applications.
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1. Introduction

The electronic control units installed in new cars usually run some kind of embedded
software to ensure proper operation. The development time for these controllers is long,
and the repeated prototyping and testing increases costs.

In addition to embedded software development, it is also important to develop the
necessary hardware. However, this task involves continuous prototype testing and redesign
based on the test results, with many iterations. It is also time-consuming and costly. The
purpose of simulating hardware and software together is to verify that the hardware and
software work together properly. This task is traditionally performed after the prototype
hardware has been built, but if this verification can be performed in a virtual environment,
the cost of prototyping and any iterations, and the time required for development, can
be reduced.

Electronic control units (ECUs) in automotive electronic systems can suffer functional
failure due to interference between the analog signals generated on the circuit and the
binary signals used in the microprocessor of the control unit [1]. Functional testing for
such failures is currently performed experimentally in the industry and is lengthy, may
be performed late in the development phase when physical prototypes are available,
and is time-consuming to correct and retest. Development is often delayed because of
hardware supply difficulties, and debugging on real hardware is also difficult. For all these
reasons, testing the functional robustness of automotive electronic systems is costly and
time-consuming [2].

For this reason, the automotive industry would be very interested in the availability
of an industrially applicable virtual robustness testing method that can test the functional
robustness of automotive electronic systems through computer simulations [3–6].

A software toolbox that allows for virtual functional testing of control units of auto-
motive electronic systems is necessary. The goal is to examine a simulation methodology
that is suitable for virtual functional testing of electronic components [7]. This can be used
in all areas where the following aspects are important:

Eng. Proc. 2024, 79, 52. https://doi.org/10.3390/engproc2024079052 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2024079052
https://doi.org/10.3390/engproc2024079052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-0384-4730
https://doi.org/10.3390/engproc2024079052
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2024079052?type=check_update&version=1


Eng. Proc. 2024, 79, 52 2 of 6

• early screening of design errors;
• shortening development time;
• increasing test coverage and efficiency of testing;
• significant reduction of testing costs;
• minimizing the use of hardware elements.

Such a solution could be used in any electronic system design process that requires
functional testing of control units, co-simulation of analog and digital circuits, or robust
design and operation. Unfortunately, there is a lack of information available on applicable
software solutions in the scientific literature. Most available tools from Synopsys and
Cadence focus on semiconductor design and instruction set validation. Other simulators,
such as LabCenter Proteus and DesignSoft TINA, are not open source and it is hard to
extend their microcontroller models [8,9]. Hence, the aim of this study is to explore if
it is possible to apply Renode to handle the virtualization of the electrical development
tool chain.

2. What Is Renode?

Renode is an open-source emulator software solution for embedded platforms. It is
an instruction set simulator that supports various architectures out of the box, such as x86
(Intel Quark), ARM Cortex-A, Cortex-M, SPARC, and RISC-V, and thanks to its open-source
nature, it can be further extended. It can be used to assemble virtual system-on-chips
from building blocks, as various microcontroller types (e.g., Cortex-M, Cortex-A) and
different peripheral models (Figure 1). Hence, it is also possible to emulate microcontrollers
used in automotive control. The unmodified production firmware can run against the
emulated cores, peripherals, and even configured sensors and actuators. The parameters
(e.g., memory addresses, peripherals, etc.) of the emulated embedded system are defined
in text-based configuration files, while the functionality is modeled in C#.
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Using Renode, rapid software development and debug capabilities can be realized
without evaluation hardware as in the standard IDE design flow. Most of the integrated
development environments can be used, the only requirement is to be able to connect to
GDB Server for debugging.
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3. Renode System as a Virtual Platform

Platforms in Renode are modeled with the system bus (identified as sysbus) of the
machine functioning as the central building block to which the peripherals are connected.
All peripherals are accessible from anywhere within the created platform.

The real hardware might use a variety of intricately connected buses, but the same
platform in Renode will just use a single bus. This simplification does not usually impact
the behavior of the simulation in any way, as the structure of the interconnect in the SoC is
hidden from the software perspective.

There are necessary configuration files to define the MCU and development board for
the emulation. It is possible to automatically start the environment using these text-based
configuration files.

A Renode simulation typically involves a few key files that work together to define
and execute the simulation environment in Renode. The typically involved files are shown
in Figure 2.
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The Renode script file (extension .resc) contains the commands to create a virtual
machine, load the board file and other necessary extensions for logging. This makes it
possible to automate the command line operations. The Renode platform definition file
(extension .repl) includes the description of the MCU (e.g., CPU and peripherals) and the
board. This script loads the processor description and the configuration of the hardware
connections for the system (e.g., GPIO connecting to an LED). Renode is also capable of
loading custom peripheral models developed in Verilog or C++ [10].

4. Implementation of an STM32F4-Based Discovery Board

The STM32F4 family is a series of 32-bit microcontrollers developed by STMicroelec-
tronics. These microcontrollers are based on the high-performance ARM Cortex-M core’s
rich set of peripherals. The STM32F4 Discovery Board is a popular development board
that leverages the capabilities of the STM32F407 microcontroller (embedded debug tool,
a digital accelerometer, LEDs, push-buttons). This board is designed to help users easily
develop and test applications, particularly those involving audio processing.

An STM32F4 Discovery Board emulation is used in this article for testing the setup of
a simulation with Renode. Figure 3 shows the memory address space of Cortex-M4 CPUs
with the configuration files set up with the same parameters as below [11].

In Renode, after a virtual machine is created, it contains only one peripheral, the
system bus, called simply sysbus. At this point there is no CPU or memory, so the machine
is not yet ready to execute any code. Renode uses a text-based format to describe platforms.
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After loading the necessary board file with the predefined platform definition (plat-
form description file) in the Renode terminal window, all the peripherals get configured
and the virtual machine is ready to use. All the configured peripherals can be listed and a
binary file can be loaded to test and debug against the emulation (Figure 4).

Eng. Proc. 2024, 79, 52 4 of 6 
 

 

 
Figure 3. The block scheme of the Cortex-M4 CPU (top left) and the memory address space. 

In Renode, after a virtual machine is created, it contains only one peripheral, the sys-
tem bus, called simply sysbus. At this point there is no CPU or memory, so the machine 
is not yet ready to execute any code. Renode uses a text-based format to describe plat-
forms. 

After loading the necessary board file with the predefined platform definition (plat-
form description file) in the Renode terminal window, all the peripherals get configured 
and the virtual machine is ready to use. All the configured peripherals can be listed and a 
binary file can be loaded to test and debug against the emulation (Figure 4). 

 
Figure 4. Defined peripherals for STM32F4 in Renode terminal window. 

  

Figure 4. Defined peripherals for STM32F4 in Renode terminal window.



Eng. Proc. 2024, 79, 52 5 of 6

5. Debugging

Virtual debugging is the most important function that is necessary to handle the virtu-
alization of the ECU development. The virtual machine can be used to debug the binary
code using the GDB remote protocol. The general GDB functions (e.g., breakpoints, step-
ping, memory access) can be used to examine the binary code against the virtual hardware
while it runs. Debugging on real hardware and virtual debugging differ significantly in
time requirements; the debugging process is transparent for emulated machines, since the
virtual time does not progress when the emulated CPU is halted.

Process is simpler because of the deterministic time flow; it is possible to stop the
debug process for the whole system at the same time. It is well suited to being part of
an automated tests scenario, e.g., running in the background on a CI server. Renode is
integrated with the Robot Framework testing suite, can be used with other test automation
environments, and provides user-friendly scripts for running tests (Figure 5).
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Provided that the binary (the compiled .elf file) executed contains a symbol map (as it
normally does during the development process), it can trace its execution, get detailed logs
including executed function names, peripheral accesses, and opcode counting, generate
code coverage reports, and use advanced GDB integrations. Renode is also equipped
with a built-in disassembler and metrics analyzer to mock elements of a device using tags,
integrates with external analyzers like Wireshark, and allows for use of hooks to monitor
or alter the execution of the binaries, e.g., by spoofing registers/memory states or injecting
(network, CAN, etc.) messages to trigger behaviors of software.

6. Conclusions

Nowadays, in a new car there are many control units that operate switches and
actuators based on sensor data. An increasing amount of data flows between these units
in an increasingly complex way. As a result, development and testing procedures are
becoming increasingly complex too.

Using Renode, it is possible to create virtual test cases, in which the corresponding
tests can be assigned to virtual nodes connected via known communication channels (e.g.,
Ethernet, CAN, wifi, etc.). This makes prototype testing much more flexible, speeding
up the overall testing process. The benefits of simulation are obvious, as the complexity
of automotive systems is constantly increasing, especially for new hardware components
where decisions have to be made on whether a new hardware component can be adapted
to specific projects.
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Renode is relevant framework to use to support automotive development due to its
test integration capabilities, the increasing coverage of hardware (supporting different
instruction set architectures), and the possibility of automation. Further research should
connect to SPICE-based electric circuit simulation.
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