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Abstract: This contribution focuses on electroconductive elastomeric composites based on styrene–
butadiene rubber filled with graphite, conductive carbon blacks, and a mixture of these fillers to
investigate changes in their conductivity during cyclic deformation. Static conductivity, mechanical
properties, and conductivity with simultaneous recording of the stress-strain curve were measured
to characterize the composites. The composites containing higher amounts of graphite showed an
increase in maximum stress and a decrease in conductivity dependency starting from the second
cycle. The results show the potential to design and construct flexible conducting composites based
on styrene−butadiene rubber in broad applications such as in the automotive industry.

Keywords: electroconductive rubber composite; conductive pathway; mechanical deformation;
physical filler networks; carbon blacks

1. Introduction

During the last decade, various efforts have been directed towards the construction
of several types of sensors such as plane heaters [1], pH sensors [2], chemical sensors [3],
and electrochemical sensors [4]. In this regard, the investigation of changes in electrical
conductivity during deformation seems to be of particular interest, especially in the case
of an electroconductive composite consisting of an insulating elastomeric matrix and
conductive filler. In particular, elastomeric conductive composites have attracted a great
deal of attention due to their low cost, light weight, and easy processing, which allow them
to be used in many engineering applications such as electromagnetic interference shielding
(EMI), conductors, and sensors in vehicle design [5]. The selection of a polymer matrix with
favorable stretchability and excellent processability is a crucial factor for strain sensing.
From this point of view, styrene−butadiene rubber (SBR) is an excellent stretchable material
compared to other rubbers [6]. Commonly, conductive fillers are carbonaceous fillers, e.g.,
carbon black (CB), graphite (Gr), or metallic powders [7,8]. However, the relationship
between the mechanical stresses and changes in the electrical conductivity of materials
during practical applications must be understood in detail to get reproducible results.

Basically, a sudden increase in the conductivity of these composites takes place in a
relatively narrow range of filler content, starting at the so-called percolation threshold [9,10].
At the percolation threshold, the filler particles form an electroconductive physical net-
work through the matrix, enabling the easy and fast transport of electrons through the
conductive pathways.

The conductivity of rubber−filler composites is sensitive to several factors such as the
filler’s conductivity, the amount of conductive filler in the rubber, the filler’s structure, and
the specific surface area [11]. However, the conductive pathways can also be affected by
many external parameters such as mechanical deformation, which leads to modification
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of the structure or even to the destruction of the filler’s network structure. However, to
the best of our knowledge, the effect of the mixture of CB and graphite on the electrical
conductivity of SBR composites under mechanical tension has not been investigated yet.

In this contribution, we are comparing elastomeric conductive composites based on
SBR filled with Gr, highly conductive CB, and a mixture of these fillers to determine the
changes in the conductivity of rubber composites under cyclic mechanical deformation.
The online measurement of conductivity and recording of the cyclic stress–strain curve is
the most important aspect of this contribution.

2. Materials and Methods
2.1. Materials

Poly (styrene-co-butadiene) rubber (SBR, SKS 30, KAUČUK Kralupy a.s., Kralupy
nad Vltavou, Czech Republic), carbon black (Vulcan®, N-234, Cabot Corp., Lešná, Czech
Republic), and graphite (EG-10, synthetic graphite, SGL Carbon, Birmingham, UK) were
used as rubber and conducting fillers. A sulfur vulcanizing system containing N-cyclohexyl-
2-benzothiazole sulfenamide CBS (Duslo, Šal’a, Slovakia), stearic acid (Setuza, Ústí nad
Labem, Czech Republic), zinc oxide (Slovlak, Košeca, Slovakia), and sulfur (Siarkopol,
Tarnobrzeg, Poland) were provided.

2.2. Preparation of Rubber Composites

The rubber compounds based on 100 phr (part per hundred rubber) of SBR matrix
consisted of 3 phr ZnO, 1 phr stearic acid, 1 phr Sulfenax CBS, and 1.75 phr of sulfur.
Composites were prepared by mixing raw materials in a 50 mL mixing chamber of a
Plastograph PLE 331 (Brabender, Duisburg, Germany). Rubber, fillers in the amounts of
10, 20, 30, 40, 50, 60, and 65 phr graphite (Gr) and 50 phr carbon black (CB), and additives
(without sulfur or accelerator) were mixed at 100 ◦C for 10 min at 40 rpm. In the second
step, sulfur and accelerator were added to the compound at 90 ◦C for 8 min at 25 rpm.
Afterward, the rubber compounds were calendered through a laboratory two roll-mill
(Nishimura, Tokyo, Japan) under ambient conditions to increase their homogeneity via
sheeting, rolling, and sheeting steps. This procedure was repeated four times with a rolling
space of 5 mm and four times with a rolling space of 2 mm and was finally followed by
two sheeting steps with a rolling space of 0.5 mm.

Testing specimens were compression-molded using a press machine (Fontijne TP 50,
Delft, The Netherlands) at 150 ◦C for an optimal vulcanization time of 30 min. In order to
measure the electrical current, two copper wires were inserted into the rubber composite
during compression. The specimens (100 × 10 × 0.7 mm3) were compression-molded using
a custom mold.

2.3. Mechanical Properties

Tensile testing was performed using a universal testing machine (Instron 3365, Instron,
Norwood, MA, USA). The rate of deformation was 10 mm·min−1. The electrical current
and the stress–strain curve were recorded in parallel. An elongation speed of 10 mm·min−1

and voltage 10 V were used. Consequently, the stress-release steps were repeated up to
seven times.

2.4. Dynamic Mechanical Thermal Analysis (DMTA)

DMTA measurements of the rubber composites were performed using a DMA Q800
(TA Instruments, Hüllhorst, Germany). Samples with dimensions of 10 × 7 × 1 mm3 were
measured in tensile mode at a frequency of 10 Hz, an amplitude of 20 µm, and a heating
rate of 2 ◦C/min in the temperature range of −70 ◦C to 100 ◦C.

2.5. Broadband Dielectric Spectroscopy

Broadband dielectric spectroscopy was carried out using an Alpha dielectric spectrom-
eter provided by Novocontrol Technologies GmbH (Montabaur, Germany). Disk-shaped
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samples with a 20 mm diameter and a ~0.5 mm thickness were used. The frequency range
of 0.1 Hz–1 MHz was used to measure the samples at room temperature. The test cell for
samples was the BDS-1200 parallel-plate capacitor (Novocontrol Technologies, Montabaur,
Germany) containing two gold-plated electrodes.

2.6. Online Measurements of Conductivity During Cyclic Deformation

The electrical current was measured during five cycles of mechanical deformation
up to an elongation of 100% using a wireless TRMS multimeter (EXTECH Instruments,
Shanghai, China). Figure 1 illustrates the setup for the measurement of conductivity
changes under cyclic deformation. The voltage and the rate of deformation were set to 30 V
and 10 mm·min−1, respectively.
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Figure 1. Online setup for monitoring the conductivity changes under cyclic deformation [7].

3. Results and Discussion
3.1. Determination of Percolation Threshold

Broadband dielectric spectroscopy is used as a sensitive technique to determine the
percolation threshold of composites, a characteristic associated with the formation of
physical conductive filler networks. The electrical conductivities of SBR-Gr and SBR-CB
composites as a function of filler content are shown in Figure 2. A sudden increase in
the conductivity was observed when a concentration of the filler reached the so-called
percolation threshold. Theoretically, at this concentration, an infinite cluster of particles
is formed in the polymeric matrix. Figure 2 shows that the composites containing CB
have an obviously lower percolation threshold in comparison with the SBR-Gr composites.
Compared to the other conductive fillers, CB particles have a higher tendency to form
conductive networks, which is attributed to their ability to form chain-like aggregates [7].

It is known that percolation depends neither on the filler size nor on its distribution.
In other words, if an amorphous matrix is used, this concentration depends strongly on
the filler shape [12]. Basically, the filler can be dispersed only in the amorphous phase of
the semi-crystalline matrix. Therefore, in the case of a highly crystalline matrix, smaller
fillers can agglomerate more easily than bigger ones due to their higher specific surface
area. Additionally, the electrical conductivity versus the frequency of the composites filled
with Gr and Gr-CB are shown in Figure 3. The samples containing 55, 60, and 65 wt% Gr
were not used for conductivity measurement during deformation since the samples were
broken before they reached 100% strain. Therefore, SBR-based composites were prepared
from the combination of constant 50 phr CB and five different Gr concentrations.
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3.2. Conductivity Behavior During Cyclic Deformation

Stress−strain behavior and the typical dependency of conductivity on applied cyclic
mechanical deformation are shown in Figure 4. As can be seen, there is a significant
difference between the first cycle and the others, with the following dependencies being
almost identical for the rest of the cycles. Stress−strain cycles showed a standard shape
with typical features of hysteresis. The stress is substantially higher before maximum de-
formation is reached compared to the values measured during the decrease in deformation.
The composite containing a higher amount of Gr exhibited an increase in maximum stress,
which is associated with the existence of more rigid physical network. Furthermore, the
conductivity shows a decrease caused by the defects in the conductive pathways that result
from a relatively small mechanical deformation. The conductivity decrease is higher at a
lower Gr concentration, which corresponds to a lower number of conductive pathways in
the composite.
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It is worth noting that the conductivity dependency, starting from the second cycle,
decreased with increasing Gr content. This phenomenon can be ascribed to the existence of
the rigid physical network, and infinite clusters can be created after an agglomeration of Gr
and CB particles.

3.3. Dynamic Mechanical Thermal Analysis (DMTA)

DMTA analysis was carried out to determine the viscoelastic behavior of the vul-
canizates related to molecular motion and structural changes. Tan δ curves of the rubber
composites are presented in Figure 5. With the increase in the Gr amount and total filler
content, Tg moves to higher temperatures. It is an indication of an increase in rigidity and
lower molecular mobility caused by filler−polymer interaction [13,14].
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Figure 5. Tan δ curves for the rubber composites filled with (a) graphite (Gr) and (b) graphite—carbon
black (CB) mixture.

In the other words, filling the SBR matrix with rigid particles results in a stiffer
material due to the reinforcement effect of the CB and Gr particles. This observation
was also supported by the conductivity behavior of the rubber composite during cyclic
deformation, as well as by the increase in maximum stress in each cycle.

4. Conclusions

This work provides novel insight into conductive elastomeric composites based on
SBR filled with highly conductive CB, Gr, and a mixture of these fillers. The effect of
fillers on the conductivity behavior of these composites was evaluated. The composites
filled with CB showed obviously lower percolation thresholds in comparison with the
SBR−Gr composites. In measurements of electrical conductivity during cyclic deformation,
a decrease in conductivity was observed due to the destruction of the conductive pathways
by a relatively small mechanical deformation. The conductivity decrease is higher at lower
Gr concentrations. However, the conductivity dependency, starting from the second cycle,
decreased with increasing Gr content. The composites demonstrated an increase in Tg with
an increase in the Gr amount, which is associated with higher rigidity and lower molecular
mobility of the rubber matrix.
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