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Abstract: Portable and wearable sensor systems are usually based on microcontrollers or field
programmable gate arrays (FPGAs), where the sensors are measured using an analog-to-digital
converter (ADC). An alternative solution, with benefits in terms of cost reduction and lower power
consumption, is the sensor-to-microcontroller direct interface (SMDI), a technique where the sensor is
measured using the general purpose input output (GPIO) interface present on any microcontroller
or FPGA. In this paper, the measurement accuracy of a non-linear temperature sensor (NTC 3950)
using SMDI was evaluated by means of LTSpice simulations in the temperature range from −10 ◦C
to 80 ◦C. The temperature was estimated using two different models and the results have shown that
the most accurate model (Steinhart–Hart model) achieves an average temperature error of 0.078 ◦C.

Keywords: temperature sensor; microcontroller; GPIO interface; data acquisition; circuit simulations;
sensor accuracy

1. Introduction

The interest in portable and wearable sensor systems is continuously increasing
with impact on both research activity and market size. These systems are usually built
on the paradigm of the Internet of Things (IoT), where a number of distributed sensor
nodes (edge devices) communicate using wireless technologies and transfer data to a
main host for data processing and analysis [1]. Portable and wearable sensor systems
are adopted for a wide range of applications, such as environmental monitoring [2–4],
microbial analysis [5–8], food safety [9–12], health monitoring [13–16], and quality analysis
in industrial environments [17–19]. Edge devices, usually based on microcontrollers or field
programmable gate arrays (FPGAs), are interfaced to the sensors using an analog-to-digital
converter (ADC), that is used to measure the sensor analog output and convert it to a
digital format for data processing and transmission. Edge devices are usually powered by
batteries or energy harvesting; thus, their power consumption is critical and can seriously
impact the sensor node lifetime [20,21].

At this regard, sensor-to-microcontroller direct interface (SMDI) is a popular technique
that allows sensor measurements without an ADC with benefits in terms of cost reduction
and lower power consumption [22,23]. In SMDI, the Schmitt trigger integrated in the
general purpose input output (GPIO) interface of a microcontroller is exploited as an
analog comparator for sensor measurements. This technique has been applied to many
types of sensors, such as resistive and capacitive sensors, as well as sensors featuring
an analog output voltage. A SMDI application for the measurement of three-wire [24]
and four-wire [25] resistive sensors was proposed by Reverter in 2022. Techniques based
on SMDI for the measurement of capacitive sensors [26] and lossy capacitive relative
humidity sensors [27] were proposed by Czaja in 2020 and 2021. In 2024, Grossi presented
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a technique based on SMDI for the measurement of an analog voltage without an ADC and
implemented it on a low-cost FPGA [28].

In the proposed study, the application of SMDI is investigated in the case of a non-
linear negative temperature coefficient (NTC) thermistor using two different models
(Steinhart–Hart model and polynomial model) to estimate the temperature from the sen-
sor data. The system was tested under real operative conditions in presence of noise
using LTSpice XVII simulations and the two models were compared in terms of accuracy.
The results have shown that the temperature estimation using the Steinhart–Hart model
provides more accurate results (average error 0.078 ◦C), in particular in the case of low
temperatures, while the polynomial model features an average error of 0.28 ◦C. In Section 2,
the basics of SMDI for the measurement of a resistive sensor are presented. In Section 3,
the resistive temperature sensor used in the simulations and the two mathematical models
for temperature estimation are presented. In Section 4, the results of the simulations are
shown, while in Section 5, conclusive remarks are drawn.

2. Sensor-to-Microcontroller Direct Interface

The schematic of the circuit used to measure the resistance value of the temperature
sensor using SMDI is presented in Figure 1. Here, the Schmitt trigger circuit, featuring an
hysteresis window with two thresholds VH and VL, is integrated in the microcontroller
GPIO interface and converts the analog voltage V1 into a digital signal V1,dig. The digital
output pin (with voltage V2) is driven by the microcontroller CPU to charge/discharge the
capacitance C through the non-linear temperature sensor with resistance RT.
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Figure 1. Schematic of the circuit to measure the value of a resistance without an ADC.

The circuit behaves like an astable multivibrator. When the analog voltage V1 increases
over VH, the signal V1,dig switches from 0 to VDD. The value of V1,dig is read by the CPU
that drives the output pin to V2 = 0, and thus discharging the capacitance C. Similarly,
when V1 decreases below VL, the signal V1,dig switches from VDD to 0. The value of V1,dig
is read by the CPU that drives the output pin to V2 = VDD, thus charging the capacitance C.

During the charging phase of the capacitance C, the signal V1 increases from VL to VH
with V2 = VDD. The circuit can be modelled with the following differential equation:

C
dV1

dt
=

VDD − V1

RT
(1)

Indicating with tH the rising time of signal V1, this value can be calculated by integrat-
ing the differential Equation (1).

tH = RTC
VH∫

VL

1
VDD − V1

dV1 = RTC·log
VDD − VL
VDD − VH

(2)
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During the discharging phase of the capacitance C, instead, the signal V1 decreases from
VH to VL with V2 =0. The circuit can be modelled with the following differential equation:

C
dV1

dt
= − V1

RT
(3)

Indicating with tL the falling time of signal V1, this value can be calculated by integrat-
ing the differential Equation (3), as follows:

tL = −RTC
VL∫

VH

1
V1

dV1 = RTC·log
VH
VL

(4)

The period TP of the signals V1 and V2 can thus be calculated as follows:

TP = tH + tL = RTC·log
VH(VDD − VL)

VL(VDD − VH)
(5)

The period TP can be measured with a digital timer integrated in the microcontroller.
Considering a case study of a 16-bit timer with a clock frequency fCLK = 64 MHz (clock
period TCLK = 15.625 ns), it is TP = N·TCLK, where N is the digital counter value. Thus, the
resistance value of the temperature sensor can be calculated as follows:

RT =
NTCLK

C·log VH(VDD−VL)
VL(VDD−VH)

(6)

3. The NTC Temperature Sensor

Negative temperature coefficient (NTC) temperature sensors are non-linear resistors,
whose resistance value changes with temperature. The resistance of NTC sensors decreases
as the temperature increases. The characteristic of an NTC 3950 temperature sensor (Conrad
Electronic, Hirschau, Germany) [29] is presented in Figure 2 in the case of the temperature
range −10–80 ◦C.

As can be seen, the characteristic of the NTC 3950 sensor is strongly non-linear and
its sensitivity, i.e., the resistance variation for temperature variations of 1 ◦C is higher
for low temperatures.

The non-linear function that best fits the characteristic of an NTC temperature sensor
is the Steinhart–Hart model, as follows:

T =
1

k1 + k2logRT + k3(logRT)
3 − 273.15 (7)

where T is the temperature expressed in ◦C; RT is the temperature sensor resistance ex-
pressed in kΩ; and k1, k2, k3 are the parameters used to fit the model with the experimental
data. The model defined by Equation (7) provides a good fit to the experimental data values
of an NTC temperature sensor. However, the model is computationally intensive and the
achieved accuracy depends on the temperature value.
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Figure 2. Characteristic of an NTC 3950 temperature sensor.

A technique used to improve the linearity of the thermistor characteristic is to put a
fixed resistance RP in parallel to the NTC temperature sensor. The equivalent resistance
Req = RT || RP has been calculated for a set of RP values (from 100 Ω to 100 kΩ) and RT
values obtained from the thermistor characteristic for temperature values in the range
from −10 ◦C to 80 ◦C. The characteristic of temperature as function of Req was fitted to a
linear regression line and the mean squared error (MSE) resulting from the temperature
estimation using the regression line was calculated for each value of RP. The results are
presented in Figure 3.
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Figure 3. Mean squared error resulting from the temperature estimation using the regression line
plotted vs. the resistance RP.

The value of RP that maximizes the linearity between the temperature and Req (i.e., it
achieves the minimum MSE) is 5.41 kΩ. The characteristic of the temperature as a function
of the resistance Req is presented in Figure 4, in the case of RP = 5.41 kΩ.

The characteristic shown in Figure 4 can be modelled using a polynomial equation of
order 3, as follows:

T = h1 + h2Req + h3R2
eq + h4R3

eq (8)

where T is the temperature expressed in ◦C; Req = RT || RP is expressed in kΩ; and h1, h2,
h3, h4 are parameters used to fit the model with the experimental data.
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Figure 4. Characteristic of the environmental temperature as function of the resistance Req.

The models defined by Equations (7) and (8) were fitted to the temperature sensor
characteristic obtained from its data sheet and the error in the estimated temperature
(|∆T|) calculated and plotted vs. the environmental temperature T for both models. The
results are presented in Figure 5. As can be seen, the Steinhart–Hart model provides higher
accuracy than the polynomial model with a maximum error in the estimated temperature
that is always below 0.1 ◦C.
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4. Simulation Results

The circuit of Figure 1 was simulated using LTSpice [30] for the following two cases:
(a) the NTC temperature sensor RT is connected between nodes 1 and 2 with C = 33 nF;
(b) the parallel of the NTC temperature sensor RT and a fixed resistor RP of value 5.41 kΩ
is connected between nodes 1 and 2 with C = 330 nF. In the case (a), the temperature
was estimated using the Steinhart–Hart model, while in the case (b), the temperature was
estimated using the polynomial model. The thresholds of the Schmitt trigger integrated
in the microcontroller GPIO interface were set to VL = 1.196 V VH = 1.644 V as a case
study, since these are the threshold values of the Schmitt trigger circuit integrated in the
GPIO interface of the low-cost microcontroller STM32L073RZT6 (ST Microelectronics) [31].
The period of the square-wave signal V2 (TP) was measured using a 16-bit counter with
a clock frequency of 64 MHz (clock period TCLK = 15.625 ns) and a white noise voltage
of peak values ±50 mV was superimposed to node 1 to simulate a real measurement
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scenario. The case of ten different environmental temperatures between −10 ◦C and 80 ◦C
was considered and, for each temperature, 20 simulations were carried out. For each
temperature, the average estimated temperature (Test) for the 20 simulations, the error
in the average estimated temperature (|∆Terror|), the standard deviation (σT), and the
maximum (Tmax) and minimum (Tmin) values of the estimated temperature were calculated.
The simulation results are reported in Table 1 for the case (a), and in Table 2 for the case (b).
The results show that the temperature estimation using the Steinhart–Hart model provides
more accurate results, in particular in the case of low temperatures (average error 0.078 ◦C
in the temperature range from −10 ◦C to 80 ◦C), while the polynomial model features an
average error of 0.28 ◦C.

Table 1. Simulation results for the case of the NTC temperature sensor between nodes 1 and 2. The
temperature is estimated with the Steinhart–Hart model.

T (◦C) Test (◦C) |∆Terror| (◦C) σT (◦C) Tmax (◦C) Tmin (◦C)

−10 −9.843 0.157 0.107 −9.643 −9.986
0 −0.094 0.094 0.103 0.109 −0.325

10 9.858 0.141 0.207 10.276 9.569
20 19.942 0.058 0.195 20.197 19.638
30 30.022 0.022 0.172 30.443 29.691
40 40.091 0.091 0.258 40.545 39.711
50 50.061 0.061 0.352 50.586 49.360
60 59.999 0.001 0.316 60.771 59.293
70 70.066 0.066 0.367 70.667 69.216
80 79.911 0.089 0.440 80.637 79.131

Table 2. Simulation results for the case of the parallel of the NTC temperature sensor and a
fixed resistor of value 5.41 kΩ between nodes 1 and 2. The temperature is estimated with the
polynomial model.

T (◦C) Test (◦C) |∆Terror| (◦C) σT (◦C) Tmax (◦C) Tmin (◦C)

−10 −9.571 0.428 1.013 −7.982 −11.975
0 −0.463 0.463 0.644 0.589 −1.665

10 9.581 0.419 0.703 10.677 8.489
20 20.367 0.367 0.404 20.890 19.499
30 30.309 0.309 0.273 30.645 29.699
40 40.017 0.017 0.264 40.376 39.575
50 49.684 0.316 0.273 50.160 49.123
60 59.861 0.139 0.286 60.346 59.362
70 70.291 0.291 0.398 70.931 69.209
80 79.930 0.070 0.379 80.637 79.311

5. Conclusions

In this paper, the measurement accuracy of a non-linear resistive temperature sensor
(NTC 3950) was investigated using the sensor-to-microcontroller direct interface, a popular
technique for sensor measurements without an analog-to-digital converter. The sensor and
the measurement system were simulated by means of the circuital simulator LTSpice and
the temperature was estimated using two different models, the Steinhart–Hart model and
the polynomial model.

The results have shown how the Steinhart–Hart model features higher accuracy, with
an average error of 0.078 ◦C on the temperature range from −10 ◦C to 80 ◦C, while the
polynomial model is less computationally intensive than the Steinhart–Hart model, but
features a lower accuracy (average error of 0.28 ◦C).
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