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Abstract: The regulation of the orientation of a flying aircraft under autopilot is a multifaceted and
crucial task that requires accuracy and flexibility. To do this, it is essential to have a complex control
system that is furnished with an advanced controller capable of actively monitoring and modifying
the flying characteristics of the aircraft. This must possess the ability to react dynamically to a range of
disturbances experienced throughout the flight, including turbulence, fluctuations in wind, and other
pertinent environmental elements. Through real-time adjustment of the flying attitude, the control
system guarantees that the aircraft maintains its planned trajectory, stability, and safety along the
whole trajectory. Typically, PID controllers are used to regulate the longitudinal direction of flights.
However, these offline tuned controllers lack automation and are unable to adjust parameters in
response to inherent disturbances seen in practice. Thus, this paper proposes online tuning techniques
that are created using artificial intelligence (AI) mechanisms, namely fuzzy logic and neural networks.
The philosophy involved in this work is the online tuning of PID gain parameters by applying
both aforementioned intelligent methods. The study also implements many classical PID tuning
techniques and compares the most effective tuning method with online approaches. To evaluate the
effectiveness of online controllers and the optimal classical PID controller, their performance was
evaluated based on time-domain transient characteristics. The overall comprehensive analysis was
conducted using MATLAB/Simulink. The analysis revealed that the intelligent fuzzy logic-based
PID controller outperformed alternative tuning techniques with respect to time performance indices
such as delay time, rise time, peak time, and settling time, which are improved by 5.88%, 3.26%,
8.05%, and 55.71%, respectively, when compared to classical PID tuning methods.

Keywords: attitude control; autopilot; flight control; fuzzy logic; neural network; PID control

1. Introduction

The autopilot mode of operation is vital to an aircraft’s operation. However, this
mode requires a smooth and robust controller to overcome sudden obstacles, change the
flight’s orientation, or control the attitude of the flight. Normally, the longitudinal attitude
control can be carried out along three axes, namely pitch axis, yaw axis, and roll axis.
These movements can be obtained by varying the orientations of the ailerons, rudder, and
elevators. The elevator controls the pitch axis, the rudder controls the yaw axis, and the
aileron controls the roll axis of the flight. The flight model representing the roll axis, pitch
axis, yaw axis, ailerons, elevators, and rudder is shown in Figure 1. If the flight must
take off, elevators are oriented upward so the lift force is produced under the front part of
the flight. This makes the flight move upward. Similarly, if the flight must descend, the
elevator must be oriented downward. If the flight must change its path, then the rudder is
oriented accordingly. If the flight wants to be rolled right, the right aileron must be oriented
downward and the left aileron must be oriented upward. Similarly, for the flight’s left roll,
the left aileron must be oriented downward, and the right aileron must be oriented upward.
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All these orientations are carried out by servo motors and are observed by the gyro sensor.
The servo motors, when connected with the ailerons, should work efficiently so that the
flight can roll smoothly without any disturbance for the passengers. This process is also
applicable to military flights.
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Figure 1. Aircraft dynamics with its longitudinal rotations.

There are different control approaches developed in the literature for various key
applications. Some of those key methods are: process control methods for the controller
design [1,2]; online attitude control of autopilot flight [3]; aircraft’s fuselage control [4];
attitude control of mini-quadrotor [5]; stability control for four-rotor aircraft [6]; control
of high-speed aircraft [7]; attitude control of UAV [8]; and flight in fixed time [9]. Further-
more, some advanced methods are investigated such as an improved attitude control for
aircraft [10], inertia-based aerial vehicle control methods [11], simulators for the aircraft
control [12], autopilot for the aerial vehicle [13], attitude control for the helicopter [14],
control methods for the UAV flight [15], ADRC design for the flight [16], attitude control
for the autopilot hypersonic vehicle [17], control structure for the micro-aerial vehicle with
four rotors [18], roll attitude control for the fixed wing flight [19], fuzzy logic controller for
longitudinal control of missiles [20], Eigen structure PID controller for longitudinal control
of aircrafts [21], longitudinal control of small UAV using a RBF-type network-based PID
control system [22], longitudinal attitude control by a dual fuzzy-PID control scheme for
tail-sitter UAV [23], pitch control of the aircraft by using self-tuned Fuzzy-PID module,
pitch attitude controller design for small UAVs, linear quadratic integral control strategy
for pitch attitude control of aircrafts [24], etc. However, each control method is developed
for a specific objective. So, their applicability to the longitudinal pitch attitude control for
enhanced flight control dynamics needs to be investigated.

Thus, in this paper, various classical PID tuning methods and artificial intelligence
(AI)-based PID tuning are realized. These are applied to the pitch control of the flight
model caused by the servo motors of the elevators. From the analysis, the best classical PID
tuning method is compared with the proposed fuzzy logic PID and ANN PID controllers
using the time-domain index for the recommendation of the best tuning method.

2. Modeling of the Pitch Attitude Controller for the Aircraft

The feedback control model of the aircraft’s attitude control is shown in Figure 2. The
transfer functions of aircraft dynamics block A(s) and the servo actuator block S(s) are
shown in (1) and (2).

A(s) =
−11.8(s + 1.97)
s2 + 5s + 12.96

(1)

S(s) =
−1

s + 12.5
(2)
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Figure 2. Feedback control mechanism for pitch attitude controlling of the flight.

The rate gyro value is obtained as 1.2, and the controller is placed at the position
of the amplifier, which obtains the feedback information from the integrator (about the
orientation angle of the flight). The controller produces the necessary control signal by
comparing the aircraft angle obtained from the integrator with the reference angle; thereby
the flight is oriented in the specified direction provided by the controller with the help of the
vertical gyroscope. Similarly, the gyro sensor obtains feedback information from the aircraft
dynamics, and the information obtained from the gyro is fed to the servo actuator where
the servo motor works to rotate the flight in the direction specified by the controller. The
data from the servo actuator is obtained by the aircraft dynamics block, which consists of
the rudder, elevator, and aileron operations, where the orientations of the flight take place.

2.1. Classical PID Controller Design

Classical PID controllers are normally used in many industrial applications due to
their simplicity in structure and ease of design. They are designed by using various
classical PID tuning methods, namely the error performance indices (EPI), open loop
transient response (OLTR), and ultimate cycle (UC) methods, as depicted in Figure 3. The
corresponding coefficients (KP, KI, and KD) of the PID module that are calculated using the
above-said methods are displayed in Table 1. The OLTR and EPI methods are PI controller-
tuning methods as they provide only proportional and integral gain parameters. UC is
a PID controller-tuning method as it provides all proportional, integral, and derivative
parameters.
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Figure 3. Various classical PID tuning methods.

Table 1. PID parameter computed with different classical tuning algorithms.

Method Algorithm KP KI KD

OLTR
ZN-1 algorithm 3.5646 0.45 -
WJC algorithm 2.0101 0.2531 -
CHR algorithm 1.3862 0.4813 -

EPI

ISE algorithm 2.772 0.418 -
ISTE algorithm 2.683 0.337 -

ISTSE algorithm 2.756 0.3519 -
ITAE algorithm 2.4263 0.2551 -

UC
ZN-2 algorithm 44.88 111.47 4.5149
MZN algorithm 14.96 18.57 4.01

TL algorithm 34.005 19.957 4.1791
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These offline design methods cannot handle real-time disturbances as the controller
design process is independent from the presence of disturbance characteristics. So, the
present research work aims to convert this offline tuning process into an online process by
using AI methods like fuzzy logic technique and neural networks technique, as discussed
in the following section.

2.2. Fuzzy Logic PID Controller Design

AI techniques provide many features such as control design, forecasting, regression
analysis, etc. Even though these AI techniques provide better outputs compared to the
offline PID tuning method, their efficacy depends on how efficiently the controller is trained.
Fuzzy logic is an AI technology used for developing intelligence in control and information
systems. Fuzzy logic is a simple system that depends on the degrees of the input and the
output states, which hinge on the state of the input and the rate of change in the input
state. The working mechanism and input/output of the fuzzy controller are shown in
Figure 4 and Figure 5, respectively. This model is trained by using various membership
functions. The input is considered as the deviation, and the outputs are PID coefficients. In
the fuzzy logic system, the analog inputs are passed to the fuzzifier, which is converted to
digital values through a process called fuzzification. This information is processed in the
fuzzy inference system via the developed fuzzy rules. This processed information is again
converted into analog values by using a process called defuzzification at the output. The
Simulink diagram of the Fuzzy PID-based system is shown in Figure 6.
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2.3. Artificial Neural Networks PID (ANN-PID) Controller Design

In neural networks, there are three methods for controller design: (i) the Levenberg–
Marquardt (LM) algorithm, (ii) the Bayesian Regularization (BR) algorithm, and (iii) the
Scaled Conjugate Gradient (SCG) algorithm. The LM algorithm works on the principle of
the least squares, which is also called the damped least square method. It is a commonly
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used method for solving nonlinear systems. This method is mainly used for small and
medium-sized systems in ANNs. The BR algorithm is derived from the Bayes theorem.
In this method, the nonlinear regression relations are converted into second-order linear
regression-based mathematical equations. The SCG algorithm uses a linear search in each
iteration. This method is mainly used for solving linear systems. This algorithm works
with feedforward ANNs. These methods solve when all the errors are in the region of
assumed values. The Simulink model of the ANN-PID-based system is shown in Figure 7.
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3. Simulation Results and Analysis

The transient responses of the classical PID controller-tuning methods are shown in
Figures 8–10. From these plots of the classical PID controller, it is experiential that the OLTR
(Figure 8) and EPI (Figure 9) methods have longer settling times of around 20–40 s, while
UC methods (Figure 10) have lesser settling times of around 2–4 s.

Eng. Proc. 2024, 5, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 6. Simulink model for the fuzzy logic-controlled PID controller for pitch control of flight. 

2.3. Artificial Neural Networks PID (ANN-PID) Controller Design 
In neural networks, there are three methods for controller design: (i) the Levenberg–

Marquardt (LM) algorithm, (ii) the Bayesian Regularization (BR) algorithm, and (iii) the 
Scaled Conjugate Gradient (SCG) algorithm. The LM algorithm works on the principle of 
the least squares, which is also called the damped least square method. It is a commonly 
used method for solving nonlinear systems. This method is mainly used for small and 
medium-sized systems in ANNs. The BR algorithm is derived from the Bayes theorem. In 
this method, the nonlinear regression relations are converted into second-order linear re-
gression-based mathematical equations. The SCG algorithm uses a linear search in each 
iteration. This method is mainly used for solving linear systems. This algorithm works 
with feedforward ANNs. These methods solve when all the errors are in the region of 
assumed values. The Simulink model of the ANN-PID-based system is shown in Figure 
7. 

 
Figure 7. Simulink block model for the ANN-controlled PID controller for pitch control of flight. 

3. Simulation Results and Analysis 
The transient responses of the classical PID controller-tuning methods are shown in 

Figures 8–10. From these plots of the classical PID controller, it is experiential that the 
OLTR (Figure 8) and EPI (Figure 9) methods have longer settling times of around 20-40 s, 
while UC methods (Figure 10) have lesser settling times of around 2–4 s. 

 
Figure 8. Transient response for the OLTR methods. Figure 8. Transient response for the OLTR methods.

Eng. Proc. 2024, 5, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 9. Transient response for the EPI methods. 

 
Figure 10. Transient response for the UC methods. 

The time-domain performance indexes are shown in Table 2. From these indexes, this 
tuning method, which leads to lower values of these indices, is considered the best tuning 
method. From this table, it is found that the TL method of classical PID design leads to 
superior values when matched to other methods. Thus, the TL method is declared as the 
best method for the controller design among the group of classical PID tuning methods. 
The transient responses of the ANN-PID controller trained with LM, BR, and SCG algo-
rithms are shown in Figure 11. Their performance index is consolidated in Table 3. From 
this table, it is determined that the BR algorithm is the best ANN-based PID tuning 
method, as it shows the superior index values. 

Table 2. Time-domain performance index computed with various classical PID design methods. 

Method Rise Time (s) Delay Time (s) Peak Time (s) Peak Overshoot (%) Settling Time (s) 

OLTR 
ZN-1 2.318 5.375 9.41 0.1445 41 
WJC 3.3145 7.342 13.501 0.2074 56 
CHR 3.555 6.3165 11.456 0.3984 85 

EPI 

ISE 2.675 5.83 10.615 0.19 46 
ISTE 2.767 6.27 11.45 0.174 52 

ISTSE 6.152 11.455 11.455 0.173 53 
ITAE 6.997 12.92 12.92 0.1667 58 

UC 
ZN-2 1.165 1.265 1.475 0.53 6.5 
MZN 1.233 1.843 2.8 0.177 7.8 

TL 1.1867 1.234 1.47 0.16 10.5 
Superior Method ZN-2 TL TL TL TL 

Figure 9. Transient response for the EPI methods.



Eng. Proc. 2024, 82, 25 6 of 9

Eng. Proc. 2024, 5, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 9. Transient response for the EPI methods. 

 
Figure 10. Transient response for the UC methods. 

The time-domain performance indexes are shown in Table 2. From these indexes, this 
tuning method, which leads to lower values of these indices, is considered the best tuning 
method. From this table, it is found that the TL method of classical PID design leads to 
superior values when matched to other methods. Thus, the TL method is declared as the 
best method for the controller design among the group of classical PID tuning methods. 
The transient responses of the ANN-PID controller trained with LM, BR, and SCG algo-
rithms are shown in Figure 11. Their performance index is consolidated in Table 3. From 
this table, it is determined that the BR algorithm is the best ANN-based PID tuning 
method, as it shows the superior index values. 

Table 2. Time-domain performance index computed with various classical PID design methods. 

Method Rise Time (s) Delay Time (s) Peak Time (s) Peak Overshoot (%) Settling Time (s) 

OLTR 
ZN-1 2.318 5.375 9.41 0.1445 41 
WJC 3.3145 7.342 13.501 0.2074 56 
CHR 3.555 6.3165 11.456 0.3984 85 

EPI 

ISE 2.675 5.83 10.615 0.19 46 
ISTE 2.767 6.27 11.45 0.174 52 

ISTSE 6.152 11.455 11.455 0.173 53 
ITAE 6.997 12.92 12.92 0.1667 58 

UC 
ZN-2 1.165 1.265 1.475 0.53 6.5 
MZN 1.233 1.843 2.8 0.177 7.8 

TL 1.1867 1.234 1.47 0.16 10.5 
Superior Method ZN-2 TL TL TL TL 

Figure 10. Transient response for the UC methods.

The time-domain performance indexes are shown in Table 2. From these indexes, this
tuning method, which leads to lower values of these indices, is considered the best tuning
method. From this table, it is found that the TL method of classical PID design leads to
superior values when matched to other methods. Thus, the TL method is declared as the
best method for the controller design among the group of classical PID tuning methods. The
transient responses of the ANN-PID controller trained with LM, BR, and SCG algorithms
are shown in Figure 11. Their performance index is consolidated in Table 3. From this table,
it is determined that the BR algorithm is the best ANN-based PID tuning method, as it
shows the superior index values.

Table 2. Time-domain performance index computed with various classical PID design methods.

Method Rise Time (s) Delay Time (s) Peak Time (s) Peak Overshoot (%) Settling Time (s)

OLTR
ZN-1 2.318 5.375 9.41 0.1445 41
WJC 3.3145 7.342 13.501 0.2074 56
CHR 3.555 6.3165 11.456 0.3984 85

EPI

ISE 2.675 5.83 10.615 0.19 46
ISTE 2.767 6.27 11.45 0.174 52

ISTSE 6.152 11.455 11.455 0.173 53
ITAE 6.997 12.92 12.92 0.1667 58

UC
ZN-2 1.165 1.265 1.475 0.53 6.5
MZN 1.233 1.843 2.8 0.177 7.8

TL 1.1867 1.234 1.47 0.16 10.5

Superior Method ZN-2 TL TL TL TL

Table 3. Time domain performance index computed with various ANN-PID design methods.

Method Rise Time (s) Delay Time (s) Peak Time (s) Peak Overshoot (%) Settling Time (s)

LM 1.2017 1.1211 1.3945 39.94 6.5
BR 1.1936 1.1169 1.3648 42.84 6.7

SCG 1.1979 1.1187 1.3943 35.89 9
Superior Method BR BR BR SCG LM
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Furthermore, the transient responses of the Fuzzy-PID controller are shown in Figure 12.
Finally, a comparative analysis is conducted among the best classical PID method (TL), the
best ANN-PID method (BR), and the Fuzzy-PID method with the help of their performance
index as presented in Table 4. From this table, it can be established that the Fuzzy-PID is
the best PID tuning method, as it shows the superior index values.
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Table 4. Comparison of time domain parameters for classical and AI PID tuning methods.

Controller Rise Time (s) Delay Time (s) Peak Time (s) Peak Overshoot (%) Settling Time (s)

Proposed ANN-PID 1.2066 1.1235 1.3773 33.37 6.7
Proposed Fuzzy-PID 1.1938 1.1169 1.3517 42.91 4.65

Classical TL-PID 1.234 1.1867 1.47 16 10.5
Superior Method Fuzzy-PID Fuzzy-PID Fuzzy-PID TL-PID Fuzzy-PID

Reduction with Fuzzy-PID 3.26% 5.88% 8.05% 55.71%
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4. Conclusions

This paper evaluates the usefulness of the classical PID tuning methods and AI-
based PID tuning methods for the design of longitudinal pitch attitude control, with the
objective of enhanced flight control dynamics. All the analysis is conducted by observing
the consolidated time domain specifications presented, and it is concluded that the fuzzy
logic-trained PID controller provides the best response over the ANN-PID controller and
classical TL-PID controllers. Hence, the Fuzzy-PID controller is recommended for the
controller design of the flight’s longitudinal pitch attitude control.
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